Подстановка условия
[src]$$\tan{\left(x + \pi \right)}$$
$$\tan{\left(x \right)}$$
$$\tan{\left((2) \right)}$$
$$\tan{\left(2 \right)}$$
$$\tan{\left(x \right)}$$
/ I*(pi + x) I*(-pi - x)\
I*\- e + e /
--------------------------------
I*(pi + x) I*(-pi - x)
e + e
$$\frac{i \left(e^{i \left(- x - \pi\right)} - e^{i \left(x + \pi\right)}\right)}{e^{i \left(- x - \pi\right)} + e^{i \left(x + \pi\right)}}$$
Тригонометрическая часть
[src] /pi \
csc|-- - x|
\2 /
-----------
csc(x)
$$\frac{\csc{\left(- x + \frac{\pi}{2} \right)}}{\csc{\left(x \right)}}$$
$$\frac{\sec{\left(x \right)}}{\csc{\left(x \right)}}$$
$$\tan{\left(x \right)}$$
$$\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$
2
2*sin (x)
---------
sin(2*x)
$$\frac{2 \sin^{2}{\left(x \right)}}{\sin{\left(2 x \right)}}$$
sec(x)
-----------
/ pi\
sec|x - --|
\ 2 /
$$\frac{\sec{\left(x \right)}}{\sec{\left(x - \frac{\pi}{2} \right)}}$$
/ pi\
-cos|x + --|
\ 2 /
-------------
cos(x)
$$- \frac{\cos{\left(x + \frac{\pi}{2} \right)}}{\cos{\left(x \right)}}$$
/ pi\
cos|x - --|
\ 2 /
-----------
cos(x)
$$\frac{\cos{\left(x - \frac{\pi}{2} \right)}}{\cos{\left(x \right)}}$$
$$\frac{1}{\cot{\left(x \right)}}$$