Разложение на множители
[src] / _____ _____\ / _____ _____\
/ _____ _____ \ / _____ _____ \ / _____ _____ \ / _____ _____ \ / _____ _____ \ / _____ _____ \ | 9 / 12 ___ 9 / 12 | | 9 / 12 ___ 9 / 12 | / _____\
| 9 / 12 /pi\ 9 / 12 /pi\| | 9 / 12 /pi\ 9 / 12 /pi\| | 9 / 12 /2*pi\ 9 / 12 /2*pi\| | 9 / 12 /2*pi\ 9 / 12 /2*pi\| | 9 / 12 /4*pi\ 9 / 12 /4*pi\| | 9 / 12 /4*pi\ 9 / 12 /4*pi\| | \/ b I*\/ 3 *\/ b | | \/ b I*\/ 3 *\/ b | | 9 / 12 |
|a + \/ b *cos|--| + I*\/ b *sin|--||*|a + \/ b *cos|--| - I*\/ b *sin|--||*|a + - \/ b *cos|----| + I*\/ b *sin|----||*|a + - \/ b *cos|----| - I*\/ b *sin|----||*|a + - \/ b *cos|----| + I*\/ b *sin|----||*|a + - \/ b *cos|----| - I*\/ b *sin|----||*|a + -------- + ----------------|*|a + -------- - ----------------|*\a - \/ b /
\ \9 / \9 // \ \9 / \9 // \ \ 9 / \ 9 // \ \ 9 / \ 9 // \ \ 9 / \ 9 // \ \ 9 / \ 9 // \ 2 2 / \ 2 2 /
$$\left(a + \left(\sqrt[9]{b^{12}} \cos{\left(\frac{\pi}{9} \right)} - i \sqrt[9]{b^{12}} \sin{\left(\frac{\pi}{9} \right)}\right)\right) \left(a + \left(\sqrt[9]{b^{12}} \cos{\left(\frac{\pi}{9} \right)} + i \sqrt[9]{b^{12}} \sin{\left(\frac{\pi}{9} \right)}\right)\right) \left(a + \left(- \sqrt[9]{b^{12}} \cos{\left(\frac{2 \pi}{9} \right)} + i \sqrt[9]{b^{12}} \sin{\left(\frac{2 \pi}{9} \right)}\right)\right) \left(a + \left(- \sqrt[9]{b^{12}} \cos{\left(\frac{2 \pi}{9} \right)} - i \sqrt[9]{b^{12}} \sin{\left(\frac{2 \pi}{9} \right)}\right)\right) \left(a + \left(- \sqrt[9]{b^{12}} \cos{\left(\frac{4 \pi}{9} \right)} + i \sqrt[9]{b^{12}} \sin{\left(\frac{4 \pi}{9} \right)}\right)\right) \left(a + \left(- \sqrt[9]{b^{12}} \cos{\left(\frac{4 \pi}{9} \right)} - i \sqrt[9]{b^{12}} \sin{\left(\frac{4 \pi}{9} \right)}\right)\right) \left(a + \left(\frac{\sqrt[9]{b^{12}}}{2} + \frac{\sqrt{3} i \sqrt[9]{b^{12}}}{2}\right)\right) \left(a + \left(\frac{\sqrt[9]{b^{12}}}{2} - \frac{\sqrt{3} i \sqrt[9]{b^{12}}}{2}\right)\right) \left(a - \sqrt[9]{b^{12}}\right)$$