Разложение на множители
[src] / 3 ___ /pi\ 3 ___ /pi\ ___ 3 ___ /pi\ ___ 3 ___ /pi\\ / 3 ___ /pi\ ___ 3 ___ /pi\ 3 ___ /pi\ ___ 3 ___ /pi\\
| \/ 5 *cos|--| I*\/ 5 *sin|--| \/ 3 *\/ 5 *sin|--| I*\/ 3 *\/ 5 *cos|--|| | \/ 5 *cos|--| \/ 3 *\/ 5 *sin|--| I*\/ 5 *sin|--| I*\/ 3 *\/ 5 *cos|--||
/ 3 ___ /pi\ 3 ___ /pi\\ / 3 ___ 2/pi\ 3 ___ 2/pi\\ / 3 ___ 2/pi\ 3 ___ 2/pi\ 3 ___ /pi\ /pi\\ | \9 / \9 / \9 / \9 /| | \9 / \9 / \9 / \9 /| / 3 ___ /pi\ /2*pi\ 3 ___ /pi\ /2*pi\ 3 ___ /pi\ /2*pi\ 3 ___ /2*pi\ /pi\\ / 3 ___ /pi\ /2*pi\ 3 ___ /pi\ /2*pi\ 3 ___ /2*pi\ /pi\ 3 ___ /pi\ /2*pi\\ / 3 ___ /pi\ /4*pi\ 3 ___ /pi\ /4*pi\ 3 ___ /pi\ /4*pi\ 3 ___ /4*pi\ /pi\\ / 3 ___ /pi\ /4*pi\ 3 ___ /pi\ /4*pi\ 3 ___ /4*pi\ /pi\ 3 ___ /pi\ /4*pi\\
|h + - \/ 5 *cos|--| - I*\/ 5 *sin|--||*|h + \/ 5 *cos |--| + \/ 5 *sin |--||*|h + - \/ 5 *sin |--| + \/ 5 *cos |--| + 2*I*\/ 5 *cos|--|*sin|--||*|h + ------------- + --------------- + ------------------- - ---------------------|*|h + ------------- - ------------------- + --------------- + ---------------------|*|h + - \/ 5 *cos|--|*cos|----| + \/ 5 *sin|--|*sin|----| - I*\/ 5 *cos|--|*sin|----| - I*\/ 5 *cos|----|*sin|--||*|h + - \/ 5 *cos|--|*cos|----| - \/ 5 *sin|--|*sin|----| - I*\/ 5 *cos|----|*sin|--| + I*\/ 5 *cos|--|*sin|----||*|h + - \/ 5 *cos|--|*cos|----| + \/ 5 *sin|--|*sin|----| - I*\/ 5 *cos|--|*sin|----| - I*\/ 5 *cos|----|*sin|--||*|h + - \/ 5 *cos|--|*cos|----| - \/ 5 *sin|--|*sin|----| - I*\/ 5 *cos|----|*sin|--| + I*\/ 5 *cos|--|*sin|----||
\ \9 / \9 // \ \9 / \9 // \ \9 / \9 / \9 / \9 // \ 2 2 2 2 / \ 2 2 2 2 / \ \9 / \ 9 / \9 / \ 9 / \9 / \ 9 / \ 9 / \9 // \ \9 / \ 9 / \9 / \ 9 / \ 9 / \9 / \9 / \ 9 // \ \9 / \ 9 / \9 / \ 9 / \9 / \ 9 / \ 9 / \9 // \ \9 / \ 9 / \9 / \ 9 / \ 9 / \9 / \9 / \ 9 //
$$\left(h + \left(\sqrt[3]{5} \sin^{2}{\left(\frac{\pi}{9} \right)} + \sqrt[3]{5} \cos^{2}{\left(\frac{\pi}{9} \right)}\right)\right) \left(h + \left(- \sqrt[3]{5} \cos{\left(\frac{\pi}{9} \right)} - \sqrt[3]{5} i \sin{\left(\frac{\pi}{9} \right)}\right)\right) \left(h + \left(- \sqrt[3]{5} \sin^{2}{\left(\frac{\pi}{9} \right)} + \sqrt[3]{5} \cos^{2}{\left(\frac{\pi}{9} \right)} + 2 \sqrt[3]{5} i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)\right) \left(h + \left(\frac{\sqrt{3} \sqrt[3]{5} \sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt[3]{5} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sqrt[3]{5} i \cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt[3]{5} i \sin{\left(\frac{\pi}{9} \right)}}{2}\right)\right) \left(h + \left(- \frac{\sqrt{3} \sqrt[3]{5} \sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt[3]{5} \cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt[3]{5} i \sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sqrt[3]{5} i \cos{\left(\frac{\pi}{9} \right)}}{2}\right)\right) \left(h + \left(- \sqrt[3]{5} \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sqrt[3]{5} \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} - \sqrt[3]{5} i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} - \sqrt[3]{5} i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right)\right) \left(h + \left(- \sqrt[3]{5} \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} - \sqrt[3]{5} \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} - \sqrt[3]{5} i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sqrt[3]{5} i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)\right) \left(h + \left(- \sqrt[3]{5} \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sqrt[3]{5} \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} - \sqrt[3]{5} i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} - \sqrt[3]{5} i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right)\right) \left(h + \left(- \sqrt[3]{5} \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} - \sqrt[3]{5} \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} - \sqrt[3]{5} i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sqrt[3]{5} i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)\right)$$