1. 2. 3. 4. 5. 6. Разложить на множители x^5-243 (х в степени 5 минус 243) - многочлен [Есть ответ!]

Разложить многочлен на множители x^5-243

Учитель очень удивится увидев твоё верное решение 😼

Решение

Разложение на множители [src]
        /                           ___________\ /                           ___________\ /                           ___________\ /                           ___________\
        |            ___           /       ___ | |            ___           /       ___ | |            ___           /       ___ | |            ___           /       ___ |
        |    3   3*\/ 5           /  5   \/ 5  | |    3   3*\/ 5           /  5   \/ 5  | |    3   3*\/ 5           /  5   \/ 5  | |    3   3*\/ 5           /  5   \/ 5  |
(x - 3)*|x + - - ------- + 3*I*  /   - + ----- |*|x + - - ------- - 3*I*  /   - + ----- |*|x + - + ------- + 3*I*  /   - - ----- |*|x + - + ------- - 3*I*  /   - - ----- |
        \    4      4          \/    8     8   / \    4      4          \/    8     8   / \    4      4          \/    8     8   / \    4      4          \/    8     8   /
$$\left(x - 3\right) \left(x + \left(- \frac{3 \sqrt{5}}{4} + \frac{3}{4} + 3 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)\right) \left(x + \left(- \frac{3 \sqrt{5}}{4} + \frac{3}{4} - 3 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)\right) \left(x + \left(\frac{3}{4} + \frac{3 \sqrt{5}}{4} + 3 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\right)\right) \left(x + \left(\frac{3}{4} + \frac{3 \sqrt{5}}{4} - 3 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\right)\right)$$
Комбинаторика [src]
         /      4      3      2       \
(-3 + x)*\81 + x  + 3*x  + 9*x  + 27*x/
$$\left(x - 3\right) \left(x^{4} + 3 x^{3} + 9 x^{2} + 27 x + 81\right)$$