1. 2. 3. 4. 5. 6. Разложить на множители x^6-y^9 (х в степени 6 минус у в степени 9) - многочлен [Есть ответ!]

Разложить многочлен на множители x^6-y^9

Учитель очень удивится увидев твоё верное решение 😼

Решение

Разложение на множители [src]
/       ____              ____\ /       ____              ____\ /         ____              ____\ /         ____              ____\                            
|    6 /  9        ___ 6 /  9 | |    6 /  9        ___ 6 /  9 | |      6 /  9        ___ 6 /  9 | |      6 /  9        ___ 6 /  9 | /       ____\ /       ____\
|    \/  y     I*\/ 3 *\/  y  | |    \/  y     I*\/ 3 *\/  y  | |      \/  y     I*\/ 3 *\/  y  | |      \/  y     I*\/ 3 *\/  y  | |    6 /  9 | |    6 /  9 |
|x + ------- + ---------------|*|x + ------- - ---------------|*|x + - ------- + ---------------|*|x + - ------- - ---------------|*\x + \/  y  /*\x - \/  y  /
\       2             2       / \       2             2       / \         2             2       / \         2             2       /                            
$$\left(x + \left(\frac{\sqrt[6]{y^{9}}}{2} - \frac{\sqrt{3} i \sqrt[6]{y^{9}}}{2}\right)\right) \left(x + \left(\frac{\sqrt[6]{y^{9}}}{2} + \frac{\sqrt{3} i \sqrt[6]{y^{9}}}{2}\right)\right) \left(x + \left(- \frac{\sqrt[6]{y^{9}}}{2} + \frac{\sqrt{3} i \sqrt[6]{y^{9}}}{2}\right)\right) \left(x + \left(- \frac{\sqrt[6]{y^{9}}}{2} - \frac{\sqrt{3} i \sqrt[6]{y^{9}}}{2}\right)\right) \left(x + \sqrt[6]{y^{9}}\right) \left(x - \sqrt[6]{y^{9}}\right)$$
Комбинаторика [src]
/ 2    3\ / 4    6    2  3\
\x  - y /*\x  + y  + x *y /
$$\left(x^{2} - y^{3}\right) \left(x^{4} + x^{2} y^{3} + y^{6}\right)$$