Разложить многочлен на множители z^2-z+5

Учитель очень удивится увидев твоё верное решение 😼

Решение

Комбинаторика [src]
     2    
5 + z  - z
z2z+5z^{2} - z + 5
Разложение на множители [src]
/              ____\ /              ____\
|      1   I*\/ 19 | |      1   I*\/ 19 |
|x + - - + --------|*|x + - - - --------|
\      2      2    / \      2      2    /
(x+(1219i2))(x+(12+19i2))\left(x + \left(- \frac{1}{2} - \frac{\sqrt{19} i}{2}\right)\right) \left(x + \left(- \frac{1}{2} + \frac{\sqrt{19} i}{2}\right)\right)
Объединение рациональных выражений [src]
5 + z*(-1 + z)
z(z1)+5z \left(z - 1\right) + 5
Выделение полного квадрата
Выделим полный квадрат из квадратного трёхчлена
(z2z)+5\left(z^{2} - z\right) + 5
Для этого воспользуемся формулой
az2+bz+c=a(m+z)2+na z^{2} + b z + c = a \left(m + z\right)^{2} + n
где
m=b2am = \frac{b}{2 a}
n=4acb24an = \frac{4 a c - b^{2}}{4 a}
В нашем случае
a=1a = 1
b=1b = -1
c=5c = 5
Тогда
m=12m = - \frac{1}{2}
n=194n = \frac{19}{4}
Итак,
(z12)2+194\left(z - \frac{1}{2}\right)^{2} + \frac{19}{4}