Вынесите общий множитель за скобки x^2-x^9 (х в квадрате минус х в степени 9) контрольная работа по алгебре 7 класс [Есть ответ!]

Общий множитель x^2-x^9

Учитель очень удивится увидев твоё верное решение 😼

Решение

Объединение рациональных выражений [src]
 2 /     7\
x *\1 - x /
$$x^{2} \left(1 - x^{7}\right)$$
Комбинаторика [src]
  2          /         2    3    4    5    6\
-x *(-1 + x)*\1 + x + x  + x  + x  + x  + x /
$$- x^{2} \left(x - 1\right) \left(x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1\right)$$
Разложение на множители [src]
          /       /pi\        /pi\\ /       /pi\        /pi\\ /         /2*pi\      /2*pi\\ /           /2*pi\      /2*pi\\ /       /3*pi\        /3*pi\\ /       /3*pi\        /3*pi\\
x*(x - 1)*|x + cos|--| + I*sin|--||*|x + cos|--| - I*sin|--||*|x + I*sin|----| - cos|----||*|x + - I*sin|----| - cos|----||*|x + cos|----| + I*sin|----||*|x + cos|----| - I*sin|----||
          \       \7 /        \7 // \       \7 /        \7 // \         \ 7  /      \ 7  // \           \ 7  /      \ 7  // \       \ 7  /        \ 7  // \       \ 7  /        \ 7  //
$$x \left(x - 1\right) \left(x + \left(\cos{\left(\frac{\pi}{7} \right)} + i \sin{\left(\frac{\pi}{7} \right)}\right)\right) \left(x + \left(\cos{\left(\frac{\pi}{7} \right)} - i \sin{\left(\frac{\pi}{7} \right)}\right)\right) \left(x + \left(- \cos{\left(\frac{2 \pi}{7} \right)} + i \sin{\left(\frac{2 \pi}{7} \right)}\right)\right) \left(x + \left(- \cos{\left(\frac{2 \pi}{7} \right)} - i \sin{\left(\frac{2 \pi}{7} \right)}\right)\right) \left(x + \left(\cos{\left(\frac{3 \pi}{7} \right)} + i \sin{\left(\frac{3 \pi}{7} \right)}\right)\right) \left(x + \left(\cos{\left(\frac{3 \pi}{7} \right)} - i \sin{\left(\frac{3 \pi}{7} \right)}\right)\right)$$