График y = f(x) = (Abs(sin(x)))*cos(x) ((Abs(синус от (х))) умножить на косинус от (х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = (Abs(sin(x)))*cos(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = |sin(x)|*cos(x)
$$f{\left(x \right)} = \cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right|$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right| = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = \frac{\pi}{2}$$
$$x_{3} = \pi$$
$$x_{4} = \frac{3 \pi}{2}$$
Численное решение
$$x_{1} = 0$$
$$x_{2} = 34.5575191894877$$
$$x_{3} = -89.5353906273091$$
$$x_{4} = -1.5707963267949$$
$$x_{5} = -59.6902604182061$$
$$x_{6} = 95.8185759344887$$
$$x_{7} = -80.1106126665397$$
$$x_{8} = -61.261056745001$$
$$x_{9} = 87.9645943005142$$
$$x_{10} = -64.4026493985908$$
$$x_{11} = 37.6991118430775$$
$$x_{12} = -7.85398163397448$$
$$x_{13} = -72.2566310325652$$
$$x_{14} = -20.4203522483337$$
$$x_{15} = 4.71238898038469$$
$$x_{16} = 23.5619449019235$$
$$x_{17} = -42.4115008234622$$
$$x_{18} = 73.8274273593601$$
$$x_{19} = 20.4203522483337$$
$$x_{20} = 86.3937979737193$$
$$x_{21} = 67.5442420521806$$
$$x_{22} = -94.2477796076938$$
$$x_{23} = -15.707963267949$$
$$x_{24} = 72.2566310325652$$
$$x_{25} = -21.9911485751286$$
$$x_{26} = -73.8274273593601$$
$$x_{27} = 81.6814089933346$$
$$x_{28} = 50.2654824574367$$
$$x_{29} = -23.5619449019235$$
$$x_{30} = 51.8362787842316$$
$$x_{31} = -28.2743338823081$$
$$x_{32} = -18.8495559215388$$
$$x_{33} = -37.6991118430775$$
$$x_{34} = 89.5353906273091$$
$$x_{35} = 59.6902604182061$$
$$x_{36} = 43.9822971502571$$
$$x_{37} = 26.7035375555132$$
$$x_{38} = -67.5442420521806$$
$$x_{39} = 58.1194640914112$$
$$x_{40} = -36.1283155162826$$
$$x_{41} = -86.3937979737193$$
$$x_{42} = -17.2787595947439$$
$$x_{43} = -65.9734457253857$$
$$x_{44} = 45.553093477052$$
$$x_{45} = -6.28318530717959$$
$$x_{46} = 7.85398163397448$$
$$x_{47} = -14.1371669411541$$
$$x_{48} = -83.2522053201295$$
$$x_{49} = 1.5707963267949$$
$$x_{50} = 64.4026493985908$$
$$x_{51} = 80.1106126665397$$
$$x_{52} = 94.2477796076938$$
$$x_{53} = 78.5398163397448$$
$$x_{54} = -29.845130209103$$
$$x_{55} = -81.6814089933346$$
$$x_{56} = 48.6946861306418$$
$$x_{57} = 70.6858347057703$$
$$x_{58} = 92.6769832808989$$
$$x_{59} = 36.1283155162826$$
$$x_{60} = -45.553093477052$$
$$x_{61} = 29.845130209103$$
$$x_{62} = -87.9645943005142$$
$$x_{63} = 15.707963267949$$
$$x_{64} = -39.2699081698724$$
$$x_{65} = -69.1150383789755$$
$$x_{66} = -58.1194640914112$$
$$x_{67} = -50.2654824574367$$
$$x_{68} = 12.5663706143592$$
$$x_{69} = 42.4115008234622$$
$$x_{70} = -43.9822971502571$$
$$x_{71} = -51.8362787842316$$
$$x_{72} = -9.42477796076938$$
$$x_{73} = 14.1371669411541$$
$$x_{74} = 65.9734457253857$$
$$x_{75} = -102.101761241668$$
$$x_{76} = 21.9911485751286$$
$$x_{77} = -95.8185759344887$$
$$x_{78} = 100.530964914873$$
$$x_{79} = -76.9690200129499$$
$$x_{80} = 28.2743338823081$$
$$x_{81} = 6.28318530717959$$
$$x_{82} = 56.5486677646163$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в Abs(sin(x))*cos(x).
$$\cos{\left(0 \right)} \left|{\sin{\left(0 \right)}}\right|$$
Результат:
$$f{\left(0 \right)} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left(x \right)} = $$
первая производная
$$- \sin{\left(x \right)} \left|{\sin{\left(x \right)}}\right| + \cos^{2}{\left(x \right)} \operatorname{sign}{\left(\sin{\left(x \right)} \right)} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = 40.0553063332699$$
$$x_{3} = -46.3384916404494$$
$$x_{4} = -69.9004365423729$$
$$x_{5} = -2.35619449019234$$
$$x_{6} = -16.4933614313464$$
$$x_{7} = 99.7455667514759$$
$$x_{8} = -40.0553063332699$$
$$x_{9} = -54.1924732744239$$
$$x_{10} = 33.7721210260903$$
$$x_{11} = -38.484510006475$$
$$x_{12} = -43.1968989868597$$
$$x_{13} = 16.4933614313464$$
$$x_{14} = -82.4668071567321$$
$$x_{15} = -85.6083998103219$$
$$x_{16} = -25.9181393921158$$
$$x_{17} = -90.3207887907066$$
$$x_{18} = 2.35619449019234$$
$$x_{19} = -87.1791961371168$$
$$x_{20} = -3.92699081698724$$
$$x_{21} = -27.4889357189107$$
$$x_{22} = 68.329640215578$$
$$x_{23} = 30.6305283725005$$
$$x_{24} = 62.0464549083984$$
$$x_{25} = -65.1880475619882$$
$$x_{26} = 60.4756585816035$$
$$x_{27} = -21.2057504117311$$
$$x_{28} = 98.174770424681$$
$$x_{29} = -91.8915851175014$$
$$x_{30} = 63.6172512351933$$
$$x_{31} = -32.2013246992954$$
$$x_{32} = -13.3517687777566$$
$$x_{33} = -47.9092879672443$$
$$x_{34} = 19.6349540849362$$
$$x_{35} = 0.785398163397448$$
$$x_{36} = -84.037603483527$$
$$x_{37} = 47.9092879672443$$
$$x_{38} = -79.3252145031423$$
$$x_{39} = 55.7632696012188$$
$$x_{40} = -18.0641577581413$$
$$x_{41} = -109.170344712245$$
$$x_{42} = 41.6261026600648$$
$$x_{43} = 90.3207887907066$$
$$x_{44} = 76.1836218495525$$
$$x_{45} = 24.3473430653209$$
$$x_{46} = 77.7544181763474$$
$$x_{47} = -71.4712328691678$$
$$x_{48} = 85.6083998103219$$
$$x_{49} = -164.148216150067$$
$$x_{50} = -98.174770424681$$
$$x_{51} = -5.49778714378214$$
$$x_{52} = -68.329640215578$$
$$x_{53} = 11.7809724509617$$
$$x_{54} = 3.92699081698724$$
$$x_{55} = 110.74114103904$$
$$x_{56} = -41.6261026600648$$
$$x_{57} = -60.4756585816035$$
$$x_{58} = -99.7455667514759$$
$$x_{59} = 88.7499924639117$$
$$x_{60} = 25.9181393921158$$
$$x_{61} = 54.1924732744239$$
$$x_{62} = -35.3429173528852$$
$$x_{63} = 10.2101761241668$$
$$x_{64} = 69.9004365423729$$
$$x_{65} = 49.4800842940392$$
$$x_{66} = -49.4800842940392$$
$$x_{67} = -33.7721210260903$$
$$x_{68} = -57.3340659280137$$
$$x_{69} = 46.3384916404494$$
$$x_{70} = 27.4889357189107$$
$$x_{71} = -77.7544181763474$$
$$x_{72} = 66.7588438887831$$
$$x_{73} = -55.7632696012188$$
$$x_{74} = 1601.4268551674$$
$$x_{75} = 91.8915851175014$$
$$x_{76} = 8.63937979737193$$
$$x_{77} = -11.7809724509617$$
$$x_{78} = 74.6128255227576$$
$$x_{79} = 38.484510006475$$
$$x_{80} = 18.0641577581413$$
$$x_{81} = 32.2013246992954$$
$$x_{82} = 44.7676953136546$$
$$x_{83} = 84.037603483527$$
$$x_{84} = -93.4623814442964$$
$$x_{85} = 96.6039740978861$$
$$x_{86} = 21.2057504117311$$
$$x_{87} = 82.4668071567321$$
$$x_{88} = -62.0464549083984$$
$$x_{89} = 52.621676947629$$
$$x_{90} = -76.1836218495525$$
$$x_{91} = -63.6172512351933$$
$$x_{92} = -10.2101761241668$$
$$x_{93} = -19.6349540849362$$
$$x_{94} = -24.3473430653209$$
$$x_{95} = 5.49778714378214$$
Зн. экстремумы в точках:
(0, 0)

(40.05530633326986, -0.5)

(-46.33849164044945, -0.5)

(-69.9004365423729, 0.5)

(-2.356194490192345, -0.5)

(-16.493361431346415, -0.5)

(99.74556675147593, 0.5)

(-40.05530633326986, -0.5)

(-54.19247327442393, -0.5)

(33.772121026090275, -0.5)

(-38.48451000647497, 0.5)

(-43.19689898685966, 0.5)

(16.493361431346415, -0.5)

(-82.46680715673207, 0.5)

(-85.60839981032187, -0.5)

(-25.918139392115794, 0.5)

(-90.32078879070656, -0.5)

(2.356194490192345, -0.5)

(-87.17919613711676, 0.5)

(-3.9269908169872414, -0.5)

(-27.488935718910692, -0.5)

(68.329640215578, 0.5)

(30.630528372500486, 0.5)

(62.04645490839842, 0.5)

(-65.18804756198821, -0.5)

(60.47565858160352, -0.5)

(-21.205750411731103, -0.5)

(98.17477042468104, -0.5)

(-91.89158511750145, -0.5)

(63.617251235193315, 0.5)

(-32.201324699295384, 0.5)

(-13.351768777756622, 0.5)

(-47.909287967244346, -0.5)

(19.634954084936208, 0.5)

(0.7853981633974483, 0.5)

(-84.03760348352696, -0.5)

(47.909287967244346, -0.5)

(-79.32521450314228, -0.5)

(55.76326960121883, 0.5)

(-18.06415775814131, 0.5)

(-109.17034471224531, -0.5)

(41.62610266006476, -0.5)

(90.32078879070656, -0.5)

(76.18362184955248, 0.5)

(24.3473430653209, 0.5)

(77.75441817634739, -0.5)

(-71.47123286916779, -0.5)

(85.60839981032187, -0.5)

(-164.1482161500667, 0.5)

(-98.17477042468104, -0.5)

(-5.497787143782138, 0.5)

(-68.329640215578, 0.5)

(11.780972450961725, 0.5)

(3.9269908169872414, -0.5)

(110.74114103904022, -0.5)

(-41.62610266006476, -0.5)

(-60.47565858160352, -0.5)

(-99.74556675147593, 0.5)

(88.74999246391165, 0.5)

(25.918139392115794, 0.5)

(54.19247327442393, -0.5)

(-35.34291735288517, -0.5)

(10.210176124166829, -0.5)

(69.9004365423729, 0.5)

(49.480084294039244, 0.5)

(-49.480084294039244, 0.5)

(-33.772121026090275, -0.5)

(-57.33406592801373, 0.5)

(46.33849164044945, -0.5)

(27.488935718910692, -0.5)

(-77.75441817634739, -0.5)

(66.7588438887831, -0.5)

(-55.76326960121883, 0.5)

(1601.4268551673972, 0.5)

(91.89158511750145, -0.5)

(8.639379797371932, -0.5)

(-11.780972450961725, 0.5)

(74.61282552275759, 0.5)

(38.48451000647497, 0.5)

(18.06415775814131, 0.5)

(32.201324699295384, 0.5)

(44.767695313654556, 0.5)

(84.03760348352696, -0.5)

(-93.46238144429635, 0.5)

(96.60397409788614, -0.5)

(21.205750411731103, -0.5)

(82.46680715673207, 0.5)

(-62.04645490839842, 0.5)

(52.621676947629034, -0.5)

(-76.18362184955248, 0.5)

(-63.617251235193315, 0.5)

(-10.210176124166829, -0.5)

(-19.634954084936208, 0.5)

(-24.3473430653209, 0.5)

(5.497787143782138, 0.5)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = 0$$
$$x_{2} = 40.0553063332699$$
$$x_{3} = -46.3384916404494$$
$$x_{4} = -2.35619449019234$$
$$x_{5} = -16.4933614313464$$
$$x_{6} = -40.0553063332699$$
$$x_{7} = -54.1924732744239$$
$$x_{8} = 33.7721210260903$$
$$x_{9} = 16.4933614313464$$
$$x_{10} = -85.6083998103219$$
$$x_{11} = -90.3207887907066$$
$$x_{12} = 2.35619449019234$$
$$x_{13} = -3.92699081698724$$
$$x_{14} = -27.4889357189107$$
$$x_{15} = -65.1880475619882$$
$$x_{16} = 60.4756585816035$$
$$x_{17} = -21.2057504117311$$
$$x_{18} = 98.174770424681$$
$$x_{19} = -91.8915851175014$$
$$x_{20} = -47.9092879672443$$
$$x_{21} = -84.037603483527$$
$$x_{22} = 47.9092879672443$$
$$x_{23} = -79.3252145031423$$
$$x_{24} = -109.170344712245$$
$$x_{25} = 41.6261026600648$$
$$x_{26} = 90.3207887907066$$
$$x_{27} = 77.7544181763474$$
$$x_{28} = -71.4712328691678$$
$$x_{29} = 85.6083998103219$$
$$x_{30} = -98.174770424681$$
$$x_{31} = 3.92699081698724$$
$$x_{32} = 110.74114103904$$
$$x_{33} = -41.6261026600648$$
$$x_{34} = -60.4756585816035$$
$$x_{35} = 54.1924732744239$$
$$x_{36} = -35.3429173528852$$
$$x_{37} = 10.2101761241668$$
$$x_{38} = -33.7721210260903$$
$$x_{39} = 46.3384916404494$$
$$x_{40} = 27.4889357189107$$
$$x_{41} = -77.7544181763474$$
$$x_{42} = 66.7588438887831$$
$$x_{43} = 91.8915851175014$$
$$x_{44} = 8.63937979737193$$
$$x_{45} = 84.037603483527$$
$$x_{46} = 96.6039740978861$$
$$x_{47} = 21.2057504117311$$
$$x_{48} = 52.621676947629$$
$$x_{49} = -10.2101761241668$$
Максимумы функции в точках:
$$x_{49} = -69.9004365423729$$
$$x_{49} = 99.7455667514759$$
$$x_{49} = -38.484510006475$$
$$x_{49} = -43.1968989868597$$
$$x_{49} = -82.4668071567321$$
$$x_{49} = -25.9181393921158$$
$$x_{49} = -87.1791961371168$$
$$x_{49} = 68.329640215578$$
$$x_{49} = 30.6305283725005$$
$$x_{49} = 62.0464549083984$$
$$x_{49} = 63.6172512351933$$
$$x_{49} = -32.2013246992954$$
$$x_{49} = -13.3517687777566$$
$$x_{49} = 19.6349540849362$$
$$x_{49} = 0.785398163397448$$
$$x_{49} = 55.7632696012188$$
$$x_{49} = -18.0641577581413$$
$$x_{49} = 76.1836218495525$$
$$x_{49} = 24.3473430653209$$
$$x_{49} = -164.148216150067$$
$$x_{49} = -5.49778714378214$$
$$x_{49} = -68.329640215578$$
$$x_{49} = 11.7809724509617$$
$$x_{49} = -99.7455667514759$$
$$x_{49} = 88.7499924639117$$
$$x_{49} = 25.9181393921158$$
$$x_{49} = 69.9004365423729$$
$$x_{49} = 49.4800842940392$$
$$x_{49} = -49.4800842940392$$
$$x_{49} = -57.3340659280137$$
$$x_{49} = -55.7632696012188$$
$$x_{49} = 1601.4268551674$$
$$x_{49} = -11.7809724509617$$
$$x_{49} = 74.6128255227576$$
$$x_{49} = 38.484510006475$$
$$x_{49} = 18.0641577581413$$
$$x_{49} = 32.2013246992954$$
$$x_{49} = 44.7676953136546$$
$$x_{49} = -93.4623814442964$$
$$x_{49} = 82.4668071567321$$
$$x_{49} = -62.0464549083984$$
$$x_{49} = -76.1836218495525$$
$$x_{49} = -63.6172512351933$$
$$x_{49} = -19.6349540849362$$
$$x_{49} = -24.3473430653209$$
$$x_{49} = 5.49778714378214$$
Убывает на промежутках
$$\left[110.74114103904, \infty\right)$$
Возрастает на промежутках
$$\left(-\infty, -109.170344712245\right]$$
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
вторая производная
$$- \left(3 \sin{\left(x \right)} \operatorname{sign}{\left(\sin{\left(x \right)} \right)} - 2 \cos^{2}{\left(x \right)} \delta\left(\sin{\left(x \right)}\right) + \left|{\sin{\left(x \right)}}\right|\right) \cos{\left(x \right)} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right|\right) = \left\langle -1, 1\right\rangle \left|{\left\langle -1, 1\right\rangle}\right|$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \left\langle -1, 1\right\rangle \left|{\left\langle -1, 1\right\rangle}\right|$$
$$\lim_{x \to \infty}\left(\cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right|\right) = \left\langle -1, 1\right\rangle \left|{\left\langle -1, 1\right\rangle}\right|$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \left\langle -1, 1\right\rangle \left|{\left\langle -1, 1\right\rangle}\right|$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции Abs(sin(x))*cos(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right|}{x}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right|}{x}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right| = \cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right|$$
- Да
$$\cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right| = - \cos{\left(x \right)} \left|{\sin{\left(x \right)}}\right|$$
- Нет
значит, функция
является
чётной
График
График функции y = (Abs(sin(x)))*cos(x) /media/krcore-image-pods/f/82/fccf952bba8067a32abc2602fb671.png