График функции y = acot(x)-x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = acot(x) - x
f(x)=x+acot(x)f{\left (x \right )} = - x + \operatorname{acot}{\left (x \right )}
График функции
02468-8-6-4-2-1010-2020
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x+acot(x)=0- x + \operatorname{acot}{\left (x \right )} = 0
Решаем это уравнение
Точки пересечения с осью X:

Численное решение
x1=0.860333589019x_{1} = -0.860333589019
x2=0.860333589019x_{2} = 0.860333589019
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в acot(x) - x.
0+acot(0)- 0 + \operatorname{acot}{\left (0 \right )}
Результат:
f(0)=π2f{\left (0 \right )} = \frac{\pi}{2}
Точка:
(0, pi/2)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
11x2+1=0-1 - \frac{1}{x^{2} + 1} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
2x(x2+1)2=0\frac{2 x}{\left(x^{2} + 1\right)^{2}} = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[0, oo)

Выпуклая на промежутках
(-oo, 0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x+acot(x))=\lim_{x \to -\infty}\left(- x + \operatorname{acot}{\left (x \right )}\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x+acot(x))=\lim_{x \to \infty}\left(- x + \operatorname{acot}{\left (x \right )}\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции acot(x) - x, делённой на x при x->+oo и x ->-oo
limx(1x(x+acot(x)))=1\lim_{x \to -\infty}\left(\frac{1}{x} \left(- x + \operatorname{acot}{\left (x \right )}\right)\right) = -1
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=xy = - x
limx(1x(x+acot(x)))=1\lim_{x \to \infty}\left(\frac{1}{x} \left(- x + \operatorname{acot}{\left (x \right )}\right)\right) = -1
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=xy = - x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x+acot(x)=xacot(x)- x + \operatorname{acot}{\left (x \right )} = x - \operatorname{acot}{\left (x \right )}
- Нет
x+acot(x)=xacot(x)- x + \operatorname{acot}{\left (x \right )} = - x - - \operatorname{acot}{\left (x \right )}
- Нет
значит, функция
не является
ни чётной ни нечётной