График функции y = asin(1/x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
           /1\
f(x) = asin|-|
           \x/
f(x)=asin(1x)f{\left (x \right )} = \operatorname{asin}{\left (\frac{1}{x} \right )}
График функции
02468-8-6-4-2-10102.5-2.5
Область определения функции
Точки, в которых функция точно неопределена:
x1=0x_{1} = 0
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
asin(1x)=0\operatorname{asin}{\left (\frac{1}{x} \right )} = 0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в asin(1/x).
asin(10)\operatorname{asin}{\left (\frac{1}{0} \right )}
Результат:
f(0)=asin(~)f{\left (0 \right )} = \operatorname{asin}{\left (\tilde{\infty} \right )}
Точка:
(0, asin(±oo))
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
1x211x2=0- \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
2+1x2(11x2)x311x2=0\frac{2 + \frac{1}{x^{2} \left(1 - \frac{1}{x^{2}}\right)}}{x^{3} \sqrt{1 - \frac{1}{x^{2}}}} = 0
Решаем это уравнение
Корни этого ур-ния
x1=22x_{1} = - \frac{\sqrt{2}}{2}
x2=22x_{2} = \frac{\sqrt{2}}{2}
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
x1=0x_{1} = 0

limx0(2+1x2(11x2)x311x2)=i\lim_{x \to 0^-}\left(\frac{2 + \frac{1}{x^{2} \left(1 - \frac{1}{x^{2}}\right)}}{x^{3} \sqrt{1 - \frac{1}{x^{2}}}}\right) = \infty i
limx0+(2+1x2(11x2)x311x2)=i\lim_{x \to 0^+}\left(\frac{2 + \frac{1}{x^{2} \left(1 - \frac{1}{x^{2}}\right)}}{x^{3} \sqrt{1 - \frac{1}{x^{2}}}}\right) = - \infty i
- пределы не равны, зн.
x1=0x_{1} = 0
- является точкой перегиба

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Не имеет изгибов на всей числовой оси
Вертикальные асимптоты
Есть:
x1=0x_{1} = 0
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limxasin(1x)=0\lim_{x \to -\infty} \operatorname{asin}{\left (\frac{1}{x} \right )} = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=0y = 0
limxasin(1x)=0\lim_{x \to \infty} \operatorname{asin}{\left (\frac{1}{x} \right )} = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=0y = 0
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции asin(1/x), делённой на x при x->+oo и x ->-oo
limx(1xasin(1x))=0\lim_{x \to -\infty}\left(\frac{1}{x} \operatorname{asin}{\left (\frac{1}{x} \right )}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(1xasin(1x))=0\lim_{x \to \infty}\left(\frac{1}{x} \operatorname{asin}{\left (\frac{1}{x} \right )}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
asin(1x)=asin(1x)\operatorname{asin}{\left (\frac{1}{x} \right )} = - \operatorname{asin}{\left (\frac{1}{x} \right )}
- Нет
asin(1x)=1asin(1x)\operatorname{asin}{\left (\frac{1}{x} \right )} = - -1 \operatorname{asin}{\left (\frac{1}{x} \right )}
- Да
значит, функция
является
нечётной