График y = f(x) = atan(2/(x-3)) (арктангенс от (2 делить на (х минус 3))) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = atan(2/(x-3))

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
           /  2  \
f(x) = atan|-----|
           \x - 3/
$$f{\left (x \right )} = \operatorname{atan}{\left (\frac{2}{x - 3} \right )}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 3$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\operatorname{atan}{\left (\frac{2}{x - 3} \right )} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в atan(2/(x - 3)).
$$\operatorname{atan}{\left (\frac{2}{-3} \right )}$$
Результат:
$$f{\left (0 \right )} = - \operatorname{atan}{\left (\frac{2}{3} \right )}$$
Точка:
(0, -atan(2/3))
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{2}{\left(1 + \frac{4}{\left(x - 3\right)^{2}}\right) \left(x - 3\right)^{2}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{4 - \frac{16}{\left(1 + \frac{4}{\left(x - 3\right)^{2}}\right) \left(x - 3\right)^{2}}}{\left(1 + \frac{4}{\left(x - 3\right)^{2}}\right) \left(x - 3\right)^{3}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
$$x_{1} = 3$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} \operatorname{atan}{\left (\frac{2}{x - 3} \right )} = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 0$$
$$\lim_{x \to \infty} \operatorname{atan}{\left (\frac{2}{x - 3} \right )} = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 0$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции atan(2/(x - 3)), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \operatorname{atan}{\left (\frac{2}{x - 3} \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x} \operatorname{atan}{\left (\frac{2}{x - 3} \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\operatorname{atan}{\left (\frac{2}{x - 3} \right )} = \operatorname{atan}{\left (\frac{2}{- x - 3} \right )}$$
- Нет
$$\operatorname{atan}{\left (\frac{2}{x - 3} \right )} = - \operatorname{atan}{\left (\frac{2}{- x - 3} \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной