График функции y = atan(1/(x-5))

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
           /    1  \
f(x) = atan|1*-----|
           \  x - 5/
f(x)=atan(11x5)f{\left(x \right)} = \operatorname{atan}{\left(1 \cdot \frac{1}{x - 5} \right)}
График функции
02468-8-6-4-2-10105-5
Область определения функции
Точки, в которых функция точно неопределена:
x1=5x_{1} = 5
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
atan(11x5)=0\operatorname{atan}{\left(1 \cdot \frac{1}{x - 5} \right)} = 0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в atan(1/(x - 1*5)).
atan(11(1)5+0)\operatorname{atan}{\left(1 \cdot \frac{1}{\left(-1\right) 5 + 0} \right)}
Результат:
f(0)=atan(15)f{\left(0 \right)} = - \operatorname{atan}{\left(\frac{1}{5} \right)}
Точка:
(0, -atan(1/5))
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
1(1+1(x5)2)(x5)2=0- \frac{1}{\left(1 + \frac{1}{\left(x - 5\right)^{2}}\right) \left(x - 5\right)^{2}} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
2(11(1+1(x5)2)(x5)2)(1+1(x5)2)(x5)3=0\frac{2 \cdot \left(1 - \frac{1}{\left(1 + \frac{1}{\left(x - 5\right)^{2}}\right) \left(x - 5\right)^{2}}\right)}{\left(1 + \frac{1}{\left(x - 5\right)^{2}}\right) \left(x - 5\right)^{3}} = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
x1=5x_{1} = 5
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limxatan(11x5)=0\lim_{x \to -\infty} \operatorname{atan}{\left(1 \cdot \frac{1}{x - 5} \right)} = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=0y = 0
limxatan(11x5)=0\lim_{x \to \infty} \operatorname{atan}{\left(1 \cdot \frac{1}{x - 5} \right)} = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=0y = 0
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции atan(1/(x - 1*5)), делённой на x при x->+oo и x ->-oo
limx(atan(11x5)x)=0\lim_{x \to -\infty}\left(\frac{\operatorname{atan}{\left(1 \cdot \frac{1}{x - 5} \right)}}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(atan(11x5)x)=0\lim_{x \to \infty}\left(\frac{\operatorname{atan}{\left(1 \cdot \frac{1}{x - 5} \right)}}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
atan(11x5)=atan(1x5)\operatorname{atan}{\left(1 \cdot \frac{1}{x - 5} \right)} = \operatorname{atan}{\left(\frac{1}{- x - 5} \right)}
- Нет
atan(11x5)=atan(1x5)\operatorname{atan}{\left(1 \cdot \frac{1}{x - 5} \right)} = - \operatorname{atan}{\left(\frac{1}{- x - 5} \right)}
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = atan(1/(x-5)) /media/krcore-image-pods/hash/xy/1/b8/c5e9e01943269fed02dd546da04e0.png