График функции пересекает ось X при f = 0 значит надо решить уравнение: −5x+4=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=54 Численное решение x1=0.8
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в 4 - 5*x. −0+4 Результат: f(0)=4 Точка:
(0, 4)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная −5=0 Решаем это уравнение Решения не найдены, возможно экстремумов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(−5x+4)=∞ Возьмём предел значит, горизонтальной асимптоты слева не существует x→∞lim(−5x+4)=−∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 4 - 5*x, делённой на x при x->+oo и x ->-oo x→−∞lim(x1(−5x+4))=−5 Возьмём предел значит, уравнение наклонной асимптоты слева: y=−5x x→∞lim(x1(−5x+4))=−5 Возьмём предел значит, уравнение наклонной асимптоты справа: y=−5x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: −5x+4=5x+4 - Нет −5x+4=−5x−4 - Нет значит, функция не является ни чётной ни нечётной