График функции y = 4*x^2+1

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
          2    
f(x) = 4*x  + 1
f(x)=4x2+1f{\left (x \right )} = 4 x^{2} + 1
График функции
-2.0-1.5-1.0-0.50.00.51.01.52.0020
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
4x2+1=04 x^{2} + 1 = 0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 4*x^2 + 1.
402+14 \cdot 0^{2} + 1
Результат:
f(0)=1f{\left (0 \right )} = 1
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
8x=08 x = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0
Зн. экстремумы в точках:
(0, 1)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=0x_{1} = 0
Максимумов у функции нет
Убывает на промежутках
[0, oo)

Возрастает на промежутках
(-oo, 0]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
8=08 = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(4x2+1)=\lim_{x \to -\infty}\left(4 x^{2} + 1\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(4x2+1)=\lim_{x \to \infty}\left(4 x^{2} + 1\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 4*x^2 + 1, делённой на x при x->+oo и x ->-oo
limx(1x(4x2+1))=\lim_{x \to -\infty}\left(\frac{1}{x} \left(4 x^{2} + 1\right)\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(1x(4x2+1))=\lim_{x \to \infty}\left(\frac{1}{x} \left(4 x^{2} + 1\right)\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
4x2+1=4x2+14 x^{2} + 1 = 4 x^{2} + 1
- Да
4x2+1=4x214 x^{2} + 1 = - 4 x^{2} - 1
- Нет
значит, функция
является
чётной