График y = f(x) = 2/(x-4)^3 (2 делить на (х минус 4) в кубе) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = 2/(x-4)^3

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
          2    
f(x) = --------
              3
       (x - 4) 
$$f{\left (x \right )} = \frac{2}{\left(x - 4\right)^{3}}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 4$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{2}{\left(x - 4\right)^{3}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 2/(x - 4)^3.
$$\frac{2}{\left(-4\right)^{3}}$$
Результат:
$$f{\left (0 \right )} = - \frac{1}{32}$$
Точка:
(0, -1/32)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{6}{\left(x - 4\right)^{4}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{24}{\left(x - 4\right)^{5}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
$$x_{1} = 4$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{2}{\left(x - 4\right)^{3}}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{2}{\left(x - 4\right)^{3}}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 0$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 2/(x - 4)^3, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{2}{x \left(x - 4\right)^{3}}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{2}{x \left(x - 4\right)^{3}}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{2}{\left(x - 4\right)^{3}} = \frac{2}{\left(- x - 4\right)^{3}}$$
- Нет
$$\frac{2}{\left(x - 4\right)^{3}} = - \frac{2}{\left(- x - 4\right)^{3}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной