Область определения функции
Точки, в которых функция точно неопределена:
x1=0
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
1+x2=0
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
x1=−2
Численное решение
x1=−2
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 2/x + 1.
02+1
Результат:
f(0)=∞~
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
dxdf(x)=0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
dxdf(x)=
Первая производная
−x22=0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
dx2d2f(x)=0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
dx2d2f(x)=
Вторая производная
x34=0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
x→−∞lim(1+x2)=1
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=1
x→∞lim(1+x2)=1
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=1
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 2/x + 1, делённой на x при x->+oo и x ->-oo
x→−∞lim(x1(1+x2))=0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
x→∞lim(x1(1+x2))=0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
1+x2=1−x2
- Нет
1+x2=−1−−x2
- Нет
значит, функция
не является
ни чётной ни нечётной