Точки, в которых функция точно неопределена: x1=0
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0 значит надо решить уравнение: −4+x22=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=−22 x2=22 Численное решение x1=0.707106781187 x2=−0.707106781187
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в 2/x^2 - 4. −4+022 Результат: f(0)=∞~ зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная −x34=0 Решаем это уравнение Решения не найдены, возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= Вторая производная x412=0 Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Вертикальные асимптоты
Есть: x1=0
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(−4+x22)=−4 Возьмём предел значит, уравнение горизонтальной асимптоты слева: y=−4 x→∞lim(−4+x22)=−4 Возьмём предел значит, уравнение горизонтальной асимптоты справа: y=−4
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 2/x^2 - 4, делённой на x при x->+oo и x ->-oo x→−∞lim(x1(−4+x22))=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа x→∞lim(x1(−4+x22))=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: −4+x22=−4+x22 - Да −4+x22=4−x22 - Нет значит, функция является чётной