График y = f(x) = 2*acos(1-x) (2 умножить на арккосинус от (1 минус х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = 2*acos(1-x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = 2*acos(1 - x)
$$f{\left (x \right )} = 2 \operatorname{acos}{\left (- x + 1 \right )}$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$2 \operatorname{acos}{\left (- x + 1 \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 2*acos(1 - x).
$$2 \operatorname{acos}{\left (- 0 + 1 \right )}$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{2}{\sqrt{- \left(- x + 1\right)^{2} + 1}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{2 x - 2}{\left(- \left(- x + 1\right)^{2} + 1\right)^{\frac{3}{2}}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 1$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[1, oo)

Выпуклая на промежутках
(-oo, 1]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(2 \operatorname{acos}{\left (- x + 1 \right )}\right) = \infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \infty i$$
$$\lim_{x \to \infty}\left(2 \operatorname{acos}{\left (- x + 1 \right )}\right) = - \infty i$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = - \infty i$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 2*acos(1 - x), делённой на x при x->+oo и x ->-oo
True

Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x \lim_{x \to -\infty}\left(\frac{2}{x} \operatorname{acos}{\left (- x + 1 \right )}\right)$$
True

Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x \lim_{x \to \infty}\left(\frac{2}{x} \operatorname{acos}{\left (- x + 1 \right )}\right)$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$2 \operatorname{acos}{\left (- x + 1 \right )} = 2 \operatorname{acos}{\left (x + 1 \right )}$$
- Нет
$$2 \operatorname{acos}{\left (- x + 1 \right )} = - 2 \operatorname{acos}{\left (x + 1 \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной