График y = f(x) = 2*x-x^3 (2 умножить на х минус х в кубе) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = 2*x-x^3

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
              3
f(x) = 2*x - x 
$$f{\left (x \right )} = - x^{3} + 2 x$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$- x^{3} + 2 x = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = - \sqrt{2}$$
$$x_{3} = \sqrt{2}$$
Численное решение
$$x_{1} = 0$$
$$x_{2} = 1.41421356237$$
$$x_{3} = -1.41421356237$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 2*x - x^3.
$$0 \cdot 2 - 0$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- 3 x^{2} + 2 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = - \frac{\sqrt{6}}{3}$$
$$x_{2} = \frac{\sqrt{6}}{3}$$
Зн. экстремумы в точках:
    ___        ___ 
 -\/ 6    -4*\/ 6  
(-------, --------)
    3        9     

   ___      ___ 
 \/ 6   4*\/ 6  
(-----, -------)
   3       9    


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = - \frac{\sqrt{6}}{3}$$
Максимумы функции в точках:
$$x_{2} = \frac{\sqrt{6}}{3}$$
Убывает на промежутках
[-sqrt(6)/3, sqrt(6)/3]

Возрастает на промежутках
(-oo, -sqrt(6)/3] U [sqrt(6)/3, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- 6 x = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 0]

Выпуклая на промежутках
[0, oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(- x^{3} + 2 x\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(- x^{3} + 2 x\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 2*x - x^3, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(- x^{3} + 2 x\right)\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(- x^{3} + 2 x\right)\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- x^{3} + 2 x = x^{3} - 2 x$$
- Нет
$$- x^{3} + 2 x = - x^{3} - - 2 x$$
- Нет
значит, функция
не является
ни чётной ни нечётной