График функции пересекает ось X при f = 0 значит надо решить уравнение: $$2 x^{4} + x = 0$$ Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение $$x_{1} = 0$$ $$x_{2} = - \frac{2^{\frac{2}{3}}}{2}$$ Численное решение $$x_{1} = 0$$ $$x_{2} = -0.793700525984$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в 2*x^4 + x. $$2 \cdot 0^{4}$$ Результат: $$f{\left (0 \right )} = 0$$ Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left (x \right )} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left (x \right )} = $$ Первая производная $$8 x^{3} + 1 = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = - \frac{1}{2}$$ Зн. экстремумы в точках:
(-1/2, -3/8)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: $$x_{1} = - \frac{1}{2}$$ Максимумов у функции нет Убывает на промежутках
[-1/2, oo)
Возрастает на промежутках
(-oo, -1/2]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$ Вторая производная $$24 x^{2} = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Не имеет изгибов на всей числовой оси
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty}\left(2 x^{4} + x\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты слева не существует $$\lim_{x \to \infty}\left(2 x^{4} + x\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 2*x^4 + x, делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty}\left(\frac{1}{x} \left(2 x^{4} + x\right)\right) = -\infty$$ Возьмём предел значит, наклонной асимптоты слева не существует $$\lim_{x \to \infty}\left(\frac{1}{x} \left(2 x^{4} + x\right)\right) = \infty$$ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$2 x^{4} + x = 2 x^{4} - x$$ - Нет $$2 x^{4} + x = - 2 x^{4} - - x$$ - Нет значит, функция не является ни чётной ни нечётной