График функции пересекает ось X при f = 0 значит надо решить уравнение: 2sin(x)=0 Решаем это уравнение Решения не найдено, может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в 2^sin(x). 2sin(0) Результат: f(0)=1 Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная 2sin(x)log(2)cos(x)=0 Решаем это уравнение Корни этого ур-ния x1=2π x2=23π Зн. экстремумы в точках:
pi
(--, 2)
2
3*pi
(----, 1/2)
2
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: x2=23π Максимумы функции в точках: x2=2π Убывает на промежутках
(-oo, pi/2] U [3*pi/2, oo)
Возрастает на промежутках
[pi/2, 3*pi/2]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= Вторая производная 2sin(x)(−sin(x)+log(2)cos2(x))log(2)=0 Решаем это уравнение Корни этого ур-ния x1=2atan(2log(2)1(1+1+4log2(2)+21+1+4log2(2))) x2=2atan(2log(2)1(−21+1+4log2(2)+1+1+4log2(2)))
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim2sin(x)=2⟨−1,1⟩ Возьмём предел значит, уравнение горизонтальной асимптоты слева: y=2⟨−1,1⟩ x→∞lim2sin(x)=2⟨−1,1⟩ Возьмём предел значит, уравнение горизонтальной асимптоты справа: y=2⟨−1,1⟩
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 2^sin(x), делённой на x при x->+oo и x ->-oo x→−∞lim(x12sin(x))=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа x→∞lim(x12sin(x))=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: 2sin(x)=2−sin(x) - Нет 2sin(x)=−2−sin(x) - Нет значит, функция не является ни чётной ни нечётной