Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left(x \right)} = $$
первая производная
$$- e^{- \left|{x}\right|} \operatorname{sign}{\left(x \right)} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -38.8720030830002$$
$$x_{2} = 91.1816620378446$$
$$x_{3} = -74.8720030830002$$
$$x_{4} = 41.1816620378446$$
$$x_{5} = -84.8720030830002$$
$$x_{6} = -32.8720030830002$$
$$x_{7} = 101.181662037845$$
$$x_{8} = -82.8720030830002$$
$$x_{9} = -92.8720030830002$$
$$x_{10} = 33.1816620378446$$
$$x_{11} = 103.181662037845$$
$$x_{12} = -50.8720030830002$$
$$x_{13} = 73.1816620378446$$
$$x_{14} = 43.1816620378446$$
$$x_{15} = 61.1816620378446$$
$$x_{16} = 109.181662037845$$
$$x_{17} = -102.872003083$$
$$x_{18} = 121.181662037845$$
$$x_{19} = 51.1816620378446$$
$$x_{20} = 63.1816620378446$$
$$x_{21} = -96.8720030830002$$
$$x_{22} = 87.1816620378446$$
$$x_{23} = 95.1816620378446$$
$$x_{24} = 35.1816620378446$$
$$x_{25} = -62.8720030830002$$
$$x_{26} = 111.181662037845$$
$$x_{27} = -30.8720030830002$$
$$x_{28} = 67.1816620378446$$
$$x_{29} = -118.872003083$$
$$x_{30} = 31.1816620378446$$
$$x_{31} = 45.1816620378446$$
$$x_{32} = 69.1816620378446$$
$$x_{33} = -60.8720030830002$$
$$x_{34} = -64.8720030830002$$
$$x_{35} = -104.872003083$$
$$x_{36} = 39.1816620378446$$
$$x_{37} = 115.181662037845$$
$$x_{38} = -68.8720030830002$$
$$x_{39} = -34.8720030830002$$
$$x_{40} = -70.8720030830002$$
$$x_{41} = -28.8720030830002$$
$$x_{42} = -88.8720030830002$$
$$x_{43} = -112.872003083$$
$$x_{44} = -72.8720030830002$$
$$x_{45} = -76.8720030830002$$
$$x_{46} = 55.1816620378446$$
$$x_{47} = -78.8720030830002$$
$$x_{48} = -98.8720030830002$$
$$x_{49} = -114.872003083$$
$$x_{50} = -56.8720030830002$$
$$x_{51} = 117.181662037845$$
$$x_{52} = 57.1816620378446$$
$$x_{53} = 59.1816620378446$$
$$x_{54} = 93.1816620378446$$
$$x_{55} = 113.181662037845$$
$$x_{56} = 81.1816620378446$$
$$x_{57} = -40.8720030830002$$
$$x_{58} = -52.8720030830002$$
$$x_{59} = 107.181662037845$$
$$x_{60} = -44.8720030830002$$
$$x_{61} = -58.8720030830002$$
$$x_{62} = 75.1816620378446$$
$$x_{63} = -80.8720030830002$$
$$x_{64} = 37.1816620378446$$
$$x_{65} = -42.8720030830002$$
$$x_{66} = 79.1816620378446$$
$$x_{67} = -116.872003083$$
$$x_{68} = 83.1816620378446$$
$$x_{69} = -90.8720030830002$$
$$x_{70} = 119.181662037845$$
$$x_{71} = 85.1816620378446$$
$$x_{72} = 105.181662037845$$
$$x_{73} = -36.8720030830002$$
$$x_{74} = 99.1816620378446$$
$$x_{75} = -66.8720030830002$$
$$x_{76} = -48.8720030830002$$
$$x_{77} = 97.1816620378446$$
$$x_{78} = -46.8720030830002$$
$$x_{79} = 53.1816620378446$$
$$x_{80} = -120.872003083$$
$$x_{81} = 49.1816620378446$$
$$x_{82} = -94.8720030830002$$
$$x_{83} = -54.8720030830002$$
$$x_{84} = 0$$
$$x_{85} = -106.872003083$$
$$x_{86} = 71.1816620378446$$
$$x_{87} = -86.8720030830002$$
$$x_{88} = 47.1816620378446$$
$$x_{89} = 65.1816620378446$$
$$x_{90} = 77.1816620378446$$
$$x_{91} = -100.872003083$$
$$x_{92} = -108.872003083$$
$$x_{93} = -110.872003083$$
$$x_{94} = 29.1816620378446$$
$$x_{95} = 89.1816620378446$$
Зн. экстремумы в точках:
(-38.8720030830002, 1.31251283948241e-17)
(91.1816620378446, 2.51366458375484e-40)
(-74.8720030830002, 3.04440349616726e-33)
(41.1816620378446, 1.30326106644072e-18)
(-84.8720030830002, 1.38215704894657e-37)
(-32.8720030830002, 5.29505471276112e-15)
(101.181662037845, 1.14120195548915e-44)
(-82.8720030830002, 1.02128359721986e-36)
(-92.8720030830002, 4.63662035813597e-41)
(33.1816620378446, 3.88496648520699e-15)
(103.181662037845, 1.54444889876301e-45)
(-50.8720030830002, 8.06435760224971e-23)
(73.1816620378446, 1.65047138990943e-32)
(43.1816620378446, 1.76377205558005e-19)
(61.1816620378446, 2.68622126807743e-27)
(109.181662037845, 3.82830606955877e-48)
(-102.872003083, 2.1050223859468e-45)
(121.181662037845, 2.35219254449043e-53)
(51.1816620378446, 5.91679608785899e-23)
(63.1816620378446, 3.63540516151472e-28)
(-96.8720030830002, 8.49226641437718e-43)
(87.1816620378446, 1.37241436076848e-38)
(95.1816620378446, 4.60393728034539e-42)
(35.1816620378446, 5.25773039640236e-16)
(-62.8720030830002, 4.95491256013989e-28)
(111.181662037845, 5.18104886240179e-49)
(-30.8720030830002, 3.91254563194992e-14)
(67.1816620378446, 6.6584768152544e-30)
(-118.872003083, 2.36889061990475e-52)
(31.1816620378446, 2.870623530166e-14)
(45.1816620378446, 2.38700590706749e-20)
(69.1816620378446, 9.01126845716874e-31)
(-60.8720030830002, 3.66121268721697e-27)
(-64.8720030830002, 6.70574494739182e-29)
(-104.872003083, 2.84883800821521e-46)
(39.1816620378446, 9.62986913148269e-18)
(115.181662037845, 9.48942200286383e-51)
(-68.8720030830002, 1.22820002936382e-30)
(-34.8720030830002, 7.16607729304888e-16)
(-70.8720030830002, 1.66218798845169e-31)
(-28.8720030830002, 2.8910019164104e-13)
(-88.8720030830002, 2.53150893960239e-39)
(-112.872003083, 9.55678684704432e-50)
(-72.8720030830002, 2.24952682209605e-32)
(-76.8720030830002, 4.1201520944033e-34)
(55.1816620378446, 1.083699005235e-24)
(-78.8720030830002, 5.57601950673994e-35)
(-98.8720030830002, 1.14930328051051e-43)
(-114.872003083, 1.29337045477668e-50)
(-56.8720030830002, 1.99895439599924e-25)
(117.181662037845, 1.28425361450932e-51)
(57.1816620378446, 1.46662711816715e-25)
(59.1816620378446, 1.98486396439648e-26)
(93.1816620378446, 3.40187508404303e-41)
(113.181662037845, 7.01178715255877e-50)
(81.1816620378446, 5.5367146973693e-36)
(-40.8720030830002, 1.77629296883043e-18)
(-52.8720030830002, 1.09139212022179e-23)
(107.181662037845, 2.82875683118464e-47)
(-44.8720030830002, 3.25339405776957e-20)
(-58.8720030830002, 2.70529059359629e-26)
(75.1816620378446, 2.23367013027319e-33)
(-80.8720030830002, 7.54632179277527e-36)
(37.1816620378446, 7.11556432378861e-17)
(-42.8720030830002, 2.40395112047869e-19)
(79.1816620378446, 4.09110955026356e-35)
(-116.872003083, 1.75038656827068e-51)
(83.1816620378446, 7.4931285176879e-37)
(-90.8720030830002, 3.42602479357106e-40)
(119.181662037845, 1.73804826667262e-52)
(85.1816620378446, 1.01408467026963e-37)
(105.181662037845, 2.09018429158566e-46)
(-36.8720030830002, 9.69823100150228e-17)
(99.1816620378446, 8.43240526931871e-44)
(-66.8720030830002, 9.07523891767756e-30)
(-48.8720030830002, 5.95879907248609e-22)
(97.1816620378446, 6.23075155839144e-43)
(-46.8720030830002, 4.40299006288557e-21)
(53.1816620378446, 8.00751274403678e-24)
(-120.872003083, 3.20594483001365e-53)
(49.1816620378446, 4.37195382191235e-22)
(-94.8720030830002, 6.27498329428976e-42)
(-54.8720030830002, 1.47703861712424e-24)
(0, 1)
(-106.872003083, 3.85548298737033e-47)
(71.1816620378446, 1.21954256897208e-31)
(-86.8720030830002, 1.87054615696665e-38)
(47.1816620378446, 3.23046120520446e-21)
(65.1816620378446, 4.91998587213439e-29)
(77.1816620378446, 3.02294379737684e-34)
(-100.872003083, 1.55541284992658e-44)
(-108.872003083, 5.21782882109705e-48)
(-110.872003083, 7.06156341383331e-49)
(29.1816620378446, 2.12111983033069e-13)
(89.1816620378446, 1.85736086232597e-39)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{95} = 0$$
Убывает на промежутках
$$\left(-\infty, 0\right]$$
Возрастает на промежутках
$$\left[0, \infty\right)$$