Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 3$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$e^{1 \cdot \frac{1}{x - 3}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в exp(1/(x - 1*3)).
$$e^{1 \cdot \frac{1}{\left(-1\right) 3 + 0}}$$
Результат:
$$f{\left(0 \right)} = e^{- \frac{1}{3}}$$
Точка:
(0, exp(-1/3))
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left(x \right)} = $$
первая производная
$$- \frac{e^{\frac{1}{x - 3}}}{\left(x - 3\right)^{2}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
вторая производная
$$\frac{\left(2 + \frac{1}{x - 3}\right) e^{\frac{1}{x - 3}}}{\left(x - 3\right)^{3}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{5}{2}$$
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
$$x_{1} = 3$$
$$\lim_{x \to 3^-}\left(\frac{\left(2 + \frac{1}{x - 3}\right) e^{\frac{1}{x - 3}}}{\left(x - 3\right)^{3}}\right) = 0$$
Возьмём предел
$$\lim_{x \to 3^+}\left(\frac{\left(2 + \frac{1}{x - 3}\right) e^{\frac{1}{x - 3}}}{\left(x - 3\right)^{3}}\right) = \infty$$
Возьмём предел
- пределы не равны, зн.
$$x_{1} = 3$$
- является точкой перегиба
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
$$\left[\frac{5}{2}, \infty\right)$$
Выпуклая на промежутках
$$\left(-\infty, \frac{5}{2}\right]$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} e^{1 \cdot \frac{1}{x - 3}} = 1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 1$$
$$\lim_{x \to \infty} e^{1 \cdot \frac{1}{x - 3}} = 1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 1$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции exp(1/(x - 1*3)), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{e^{\frac{1}{x - 3}}}{x}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{e^{\frac{1}{x - 3}}}{x}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$e^{1 \cdot \frac{1}{x - 3}} = e^{\frac{1}{- x - 3}}$$
- Нет
$$e^{1 \cdot \frac{1}{x - 3}} = - e^{\frac{1}{- x - 3}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной