График y = f(x) = exp(x-(1/x)) (экспонента от (х минус (1 делить на х))) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = exp(x-(1/x))

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
            1
        x - -
            x
f(x) = e     
$$f{\left (x \right )} = e^{x - \frac{1}{x}}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$e^{x - \frac{1}{x}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в exp(x - 1/x).
$$e^{- \tilde{\infty}}$$
Результат:
$$f{\left (0 \right )} = e^{\tilde{\infty}}$$
Точка:
(0, exp(±oo))
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\left(1 + \frac{1}{x^{2}}\right) e^{x - \frac{1}{x}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\left(\left(1 + \frac{1}{x^{2}}\right)^{2} - \frac{2}{x^{3}}\right) e^{x - \frac{1}{x}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
$$x_{1} = 0$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} e^{x - \frac{1}{x}} = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 0$$
$$\lim_{x \to \infty} e^{x - \frac{1}{x}} = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции exp(x - 1/x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} e^{x - \frac{1}{x}}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x} e^{x - \frac{1}{x}}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$e^{x - \frac{1}{x}} = e^{- x + \frac{1}{x}}$$
- Нет
$$e^{x - \frac{1}{x}} = - e^{- x + \frac{1}{x}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной