График y = f(x) = exp(x^(1/3)) (экспонента от (х в степени (1 делить на 3))) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = exp(x^(1/3))

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        3 ___
        \/ x 
f(x) = e     
$$f{\left (x \right )} = e^{\sqrt[3]{x}}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$e^{\sqrt[3]{x}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в exp(x^(1/3)).
$$e^{\sqrt[3]{0}}$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{e^{\sqrt[3]{x}}}{3 x^{\frac{2}{3}}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{\left(1 - \frac{2}{\sqrt[3]{x}}\right) e^{\sqrt[3]{x}}}{9 x^{\frac{4}{3}}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 8$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[8, oo)

Выпуклая на промежутках
(-oo, 8]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
Предел слева не удалось вычислить
$$\lim_{x \to -\infty} e^{\sqrt[3]{x}}$$
$$\lim_{x \to \infty} e^{\sqrt[3]{x}} = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции exp(x^(1/3)), делённой на x при x->+oo и x ->-oo
Предел слева не удалось вычислить
$$\lim_{x \to -\infty}\left(\frac{e^{\sqrt[3]{x}}}{x}\right)$$
$$\lim_{x \to \infty}\left(\frac{e^{\sqrt[3]{x}}}{x}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$e^{\sqrt[3]{x}} = e^{\sqrt[3]{- x}}$$
- Нет
$$e^{\sqrt[3]{x}} = - e^{\sqrt[3]{- x}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной