График функции y = e^(2/x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        2
        -
        x
f(x) = E 
f(x)=e2xf{\left (x \right )} = e^{\frac{2}{x}}
График функции
-0.20-0.18-0.16-0.14-0.12-0.10-0.08-0.06-0.04-0.020.00000.0002
Область определения функции
Точки, в которых функция точно неопределена:
x1=0x_{1} = 0
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
e2x=0e^{\frac{2}{x}} = 0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в E^(2/x).
e20e^{\frac{2}{0}}
Результат:
f(0)=e~f{\left (0 \right )} = e^{\tilde{\infty}}
Точка:
(0, exp(±oo))
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
2e2xx2=0- \frac{2 e^{\frac{2}{x}}}{x^{2}} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
4e2xx3(1+1x)=0\frac{4 e^{\frac{2}{x}}}{x^{3}} \left(1 + \frac{1}{x}\right) = 0
Решаем это уравнение
Корни этого ур-ния
x1=1x_{1} = -1
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
x1=0x_{1} = 0

limx0(4e2xx3(1+1x))=0\lim_{x \to 0^-}\left(\frac{4 e^{\frac{2}{x}}}{x^{3}} \left(1 + \frac{1}{x}\right)\right) = 0
limx0+(4e2xx3(1+1x))=\lim_{x \to 0^+}\left(\frac{4 e^{\frac{2}{x}}}{x^{3}} \left(1 + \frac{1}{x}\right)\right) = \infty
- пределы не равны, зн.
x1=0x_{1} = 0
- является точкой перегиба

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[-1, oo)

Выпуклая на промежутках
(-oo, -1]
Вертикальные асимптоты
Есть:
x1=0x_{1} = 0
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limxe2x=1\lim_{x \to -\infty} e^{\frac{2}{x}} = 1
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=1y = 1
limxe2x=1\lim_{x \to \infty} e^{\frac{2}{x}} = 1
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=1y = 1
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции E^(2/x), делённой на x при x->+oo и x ->-oo
limx(e2xx)=0\lim_{x \to -\infty}\left(\frac{e^{\frac{2}{x}}}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(e2xx)=0\lim_{x \to \infty}\left(\frac{e^{\frac{2}{x}}}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
e2x=e2xe^{\frac{2}{x}} = e^{- \frac{2}{x}}
- Нет
e2x=e2xe^{\frac{2}{x}} = - e^{- \frac{2}{x}}
- Нет
значит, функция
не является
ни чётной ни нечётной