График функции пересекает ось X при f = 0 значит надо решить уравнение: e∣x∣=0 Решаем это уравнение Решения не найдено, может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в E^|x|. e∣0∣ Результат: f(0)=1 Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная e∣x∣sign(x)=0 Решаем это уравнение Корни этого ур-ния x1=0 Зн. экстремумы в точках:
(0, 1)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: x1=0 Максимумов у функции нет Убывает на промежутках
[0, oo)
Возрастает на промежутках
(-oo, 0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lime∣x∣=∞ Возьмём предел значит, горизонтальной асимптоты слева не существует x→∞lime∣x∣=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции E^|x|, делённой на x при x->+oo и x ->-oo x→−∞lim(xe∣x∣)=−∞ Возьмём предел значит, наклонной асимптоты слева не существует x→∞lim(xe∣x∣)=∞ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: e∣x∣=e∣x∣ - Да e∣x∣=−e∣x∣ - Нет значит, функция является чётной