Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{e^{x^{2}}}{x} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в E^(x^2)/x.
$$\frac{e^{0^{2}}}{0}$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$2 e^{x^{2}} - \frac{e^{x^{2}}}{x^{2}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = - \frac{\sqrt{2}}{2}$$
$$x_{2} = \frac{\sqrt{2}}{2}$$
Зн. экстремумы в точках:
___
-\/ 2 ___ 1/2
(-------, -\/ 2 *e )
2
___
\/ 2 ___ 1/2
(-----, \/ 2 *e )
2
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = \frac{\sqrt{2}}{2}$$
Максимумы функции в точках:
$$x_{2} = - \frac{\sqrt{2}}{2}$$
Убывает на промежутках
(-oo, -sqrt(2)/2] U [sqrt(2)/2, oo)
Возрастает на промежутках
[-sqrt(2)/2, sqrt(2)/2]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$2 \left(2 x - \frac{1}{x} + \frac{1}{x^{3}}\right) e^{x^{2}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{e^{x^{2}}}{x}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{e^{x^{2}}}{x}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции E^(x^2)/x, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{e^{x^{2}}}{x^{2}}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{e^{x^{2}}}{x^{2}}\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{e^{x^{2}}}{x} = - \frac{e^{x^{2}}}{x}$$
- Нет
$$\frac{e^{x^{2}}}{x} = - \frac{-1 e^{x^{2}}}{x}$$
- Нет
значит, функция
не является
ни чётной ни нечётной