График функции пересекает ось X при f = 0 значит надо решить уравнение: ex3=0 Решаем это уравнение Решения не найдено, может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в E^(x^3). e03 Результат: f(0)=1 Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная 3x2ex3=0 Решаем это уравнение Корни этого ур-ния x1=0 Зн. экстремумы в точках:
(0, 1)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумов у функции нет Максимумов у функции нет Не изменяет значения на всей числовой оси
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= Вторая производная 3x(3x3+2)ex3=0 Решаем это уравнение Корни этого ур-ния x1=0 x2=−332332
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках
(-oo, -2**(1/3)*3**(2/3)/3] U [0, oo)
Выпуклая на промежутках
[-2**(1/3)*3**(2/3)/3, 0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞limex3=0 Возьмём предел значит, уравнение горизонтальной асимптоты слева: y=0 x→∞limex3=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции E^(x^3), делённой на x при x->+oo и x ->-oo x→−∞lim(xex3)=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа x→∞lim(xex3)=∞ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: ex3=e−x3 - Нет ex3=−e−x3 - Нет значит, функция не является ни чётной ни нечётной