График y = f(x) = coth(x)/tanh(x) (гиперболический котангенс от (х) делить на гиперболический тангенс от (х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = coth(x)/tanh(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
       coth(x)
f(x) = -------
       tanh(x)
$$f{\left(x \right)} = \frac{\coth{\left(x \right)}}{\tanh{\left(x \right)}}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{\coth{\left(x \right)}}{\tanh{\left(x \right)}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в coth(x)/tanh(x).
$$\frac{\coth{\left(0 \right)}}{\tanh{\left(0 \right)}}$$
Результат:
$$f{\left(0 \right)} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left(x \right)} = $$
первая производная
$$\frac{\left(\tanh^{2}{\left(x \right)} - 1\right) \coth{\left(x \right)}}{\tanh^{2}{\left(x \right)}} - \frac{1}{\sinh^{2}{\left(x \right)} \tanh{\left(x \right)}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
вторая производная
$$\frac{2 \left(\left(\frac{\tanh^{2}{\left(x \right)} - 1}{\tanh^{2}{\left(x \right)}} - 1\right) \left(\tanh^{2}{\left(x \right)} - 1\right) \coth{\left(x \right)} - \frac{\tanh^{2}{\left(x \right)} - 1}{\sinh^{2}{\left(x \right)} \tanh{\left(x \right)}} + \frac{\cosh{\left(x \right)}}{\sinh^{3}{\left(x \right)}}\right)}{\tanh{\left(x \right)}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
$$x_{1} = 0$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{\coth{\left(x \right)}}{\tanh{\left(x \right)}}\right) = 1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 1$$
$$\lim_{x \to \infty}\left(\frac{\coth{\left(x \right)}}{\tanh{\left(x \right)}}\right) = 1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 1$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции coth(x)/tanh(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\coth{\left(x \right)}}{x \tanh{\left(x \right)}}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{\coth{\left(x \right)}}{x \tanh{\left(x \right)}}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{\coth{\left(x \right)}}{\tanh{\left(x \right)}} = \frac{\coth{\left(x \right)}}{\tanh{\left(x \right)}}$$
- Нет
$$\frac{\coth{\left(x \right)}}{\tanh{\left(x \right)}} = - \frac{\coth{\left(x \right)}}{\tanh{\left(x \right)}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = coth(x)/tanh(x) /media/krcore-image-pods/4/0d/739558d1a0050d29d943a3ae933ab.png