График y = f(x) = cos(2*x)+x (косинус от (2 умножить на х) плюс х) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = cos(2*x)+x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = cos(2*x) + x
$$f{\left (x \right )} = x + \cos{\left (2 x \right )}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x + \cos{\left (2 x \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Численное решение
$$x_{1} = -0.514933264661$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в cos(2*x) + x.
$$\cos{\left (0 \cdot 2 \right )}$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- 2 \sin{\left (2 x \right )} + 1 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{\pi}{12}$$
$$x_{2} = \frac{5 \pi}{12}$$
Зн. экстремумы в точках:
       ___      
 pi  \/ 3    pi 
(--, ----- + --)
 12    2     12 

           ___        
 5*pi    \/ 3    5*pi 
(----, - ----- + ----)
  12       2      12  


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = \frac{5 \pi}{12}$$
Максимумы функции в точках:
$$x_{2} = \frac{\pi}{12}$$
Убывает на промежутках
(-oo, pi/12] U [5*pi/12, oo)

Возрастает на промежутках
[pi/12, 5*pi/12]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- 4 \cos{\left (2 x \right )} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{\pi}{4}$$
$$x_{2} = \frac{3 \pi}{4}$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[pi/4, 3*pi/4]

Выпуклая на промежутках
(-oo, pi/4] U [3*pi/4, oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x + \cos{\left (2 x \right )}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x + \cos{\left (2 x \right )}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции cos(2*x) + x, делённой на x при x->+oo и x ->-oo
True

Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x \lim_{x \to -\infty}\left(\frac{1}{x} \left(x + \cos{\left (2 x \right )}\right)\right)$$
True

Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x \lim_{x \to \infty}\left(\frac{1}{x} \left(x + \cos{\left (2 x \right )}\right)\right)$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x + \cos{\left (2 x \right )} = - x + \cos{\left (2 x \right )}$$
- Нет
$$x + \cos{\left (2 x \right )} = - -1 x - \cos{\left (2 x \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной