График y = f(x) = cbrt(x)/(x+1) (кубический корень из (х) делить на (х плюс 1)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = cbrt(x)/(x+1)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
       3 ___
       \/ x 
f(x) = -----
       x + 1
$$f{\left (x \right )} = \frac{\sqrt[3]{x}}{x + 1}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = -1$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{\sqrt[3]{x}}{x + 1} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^(1/3)/(x + 1).
3 ___
\/ 0 
-----
  1  

Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{\sqrt[3]{x}}{\left(x + 1\right)^{2}} + \frac{1}{3 x^{\frac{2}{3}} \left(x + 1\right)} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \frac{1}{2}$$
Зн. экстремумы в точках:
       2/3 
      2    
(1/2, ----)
       3   


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = \frac{1}{2}$$
Убывает на промежутках
(-oo, 1/2]

Возрастает на промежутках
[1/2, oo)
Вертикальные асимптоты
Есть:
$$x_{1} = -1$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{\sqrt[3]{x}}{x + 1}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{\sqrt[3]{x}}{x + 1}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 0$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^(1/3)/(x + 1), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x^{\frac{2}{3}} \left(x + 1\right)}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x^{\frac{2}{3}} \left(x + 1\right)}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{\sqrt[3]{x}}{x + 1} = \frac{\sqrt[3]{- x}}{- x + 1}$$
- Нет
$$\frac{\sqrt[3]{x}}{x + 1} = - \frac{\sqrt[3]{- x}}{- x + 1}$$
- Нет
значит, функция
не является
ни чётной ни нечётной