График функции y = log(2*x)+5

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = log(2*x) + 5
f(x)=log(2x)+5f{\left(x \right)} = \log{\left(2 x \right)} + 5
График функции
02468-8-6-4-2-1010010
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
log(2x)+5=0\log{\left(2 x \right)} + 5 = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=12e5x_{1} = \frac{1}{2 e^{5}}
Численное решение
x1=0.00336897349954273x_{1} = 0.00336897349954273
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в log(2*x) + 5.
5+log(20)5 + \log{\left(2 \cdot 0 \right)}
Результат:
f(0)=~f{\left(0 \right)} = \tilde{\infty}
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
1x=0\frac{1}{x} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
1x2=0- \frac{1}{x^{2}} = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(log(2x)+5)=\lim_{x \to -\infty}\left(\log{\left(2 x \right)} + 5\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(log(2x)+5)=\lim_{x \to \infty}\left(\log{\left(2 x \right)} + 5\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции log(2*x) + 5, делённой на x при x->+oo и x ->-oo
limx(log(2x)+5x)=0\lim_{x \to -\infty}\left(\frac{\log{\left(2 x \right)} + 5}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(log(2x)+5x)=0\lim_{x \to \infty}\left(\frac{\log{\left(2 x \right)} + 5}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
log(2x)+5=log(2x)+5\log{\left(2 x \right)} + 5 = \log{\left(- 2 x \right)} + 5
- Нет
log(2x)+5=log(2x)5\log{\left(2 x \right)} + 5 = - \log{\left(- 2 x \right)} - 5
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = log(2*x)+5 /media/krcore-image-pods/hash/xy/d/b8/a710af354626d5532a08c08d15875.png