График функции y = log(1)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = log(1)
f(x)=log(1)f{\left (x \right )} = \log{\left (1 \right )}
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в log(1).
log(1)\log{\left (1 \right )}
Результат:
f(0)=0f{\left (0 \right )} = 0
Точка:
(0, 0)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limxlog(1)=0\lim_{x \to -\infty} \log{\left (1 \right )} = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=0y = 0
limxlog(1)=0\lim_{x \to \infty} \log{\left (1 \right )} = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=0y = 0
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции log(1), делённой на x при x->+oo и x ->-oo
limx(1xlog(1))=0\lim_{x \to -\infty}\left(\frac{1}{x} \log{\left (1 \right )}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(1xlog(1))=0\lim_{x \to \infty}\left(\frac{1}{x} \log{\left (1 \right )}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
log(1)=log(1)\log{\left (1 \right )} = \log{\left (1 \right )}
- Да
log(1)=log(1)\log{\left (1 \right )} = - \log{\left (1 \right )}
- Нет
значит, функция
является
чётной