Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\log{\left (- \cos{\left (x \right )} + 1 \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = \frac{\pi}{2}$$
$$x_{2} = \frac{3 \pi}{2}$$
Численное решение
$$x_{1} = -54.9778714378$$
$$x_{2} = 39.2699081699$$
$$x_{3} = 51.8362787842$$
$$x_{4} = 86.3937979737$$
$$x_{5} = -17.2787595947$$
$$x_{6} = 45.5530934771$$
$$x_{7} = 61.261056745$$
$$x_{8} = 83.2522053201$$
$$x_{9} = -70.6858347058$$
$$x_{10} = -89.5353906273$$
$$x_{11} = 92.6769832809$$
$$x_{12} = 76.9690200129$$
$$x_{13} = -32.9867228627$$
$$x_{14} = 17.2787595947$$
$$x_{15} = -48.6946861306$$
$$x_{16} = -80.1106126665$$
$$x_{17} = -42.4115008235$$
$$x_{18} = -58.1194640914$$
$$x_{19} = 1.57079632679$$
$$x_{20} = -95.8185759345$$
$$x_{21} = 95.8185759345$$
$$x_{22} = -36.1283155163$$
$$x_{23} = -64.4026493986$$
$$x_{24} = 36.1283155163$$
$$x_{25} = -61.261056745$$
$$x_{26} = -92.6769832809$$
$$x_{27} = 32.9867228627$$
$$x_{28} = -14.1371669412$$
$$x_{29} = 80.1106126665$$
$$x_{30} = 4.71238898038$$
$$x_{31} = 10.9955742876$$
$$x_{32} = 7.85398163397$$
$$x_{33} = 23.5619449019$$
$$x_{34} = -39.2699081699$$
$$x_{35} = 64.4026493986$$
$$x_{36} = -73.8274273594$$
$$x_{37} = 20.4203522483$$
$$x_{38} = -26.7035375555$$
$$x_{39} = -83.2522053201$$
$$x_{40} = -98.9601685881$$
$$x_{41} = 48.6946861306$$
$$x_{42} = 14.1371669412$$
$$x_{43} = 98.9601685881$$
$$x_{44} = -45.5530934771$$
$$x_{45} = -51.8362787842$$
$$x_{46} = -67.5442420522$$
$$x_{47} = 54.9778714378$$
$$x_{48} = 26.7035375555$$
$$x_{49} = -86.3937979737$$
$$x_{50} = -20.4203522483$$
$$x_{51} = -7.85398163397$$
$$x_{52} = -4.71238898038$$
$$x_{53} = -76.9690200129$$
$$x_{54} = 89.5353906273$$
$$x_{55} = -10.9955742876$$
$$x_{56} = -1.57079632679$$
$$x_{57} = -23.5619449019$$
$$x_{58} = 73.8274273594$$
$$x_{59} = 70.6858347058$$
$$x_{60} = 29.8451302091$$
$$x_{61} = 42.4115008235$$
$$x_{62} = 67.5442420522$$
$$x_{63} = 58.1194640914$$
$$x_{64} = -29.8451302091$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в log(1 - cos(x)).
$$\log{\left (- \cos{\left (0 \right )} + 1 \right )}$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{\sin{\left (x \right )}}{- \cos{\left (x \right )} + 1} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = \pi$$
Зн. экстремумы в точках:
(pi, log(2))
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = \pi$$
Убывает на промежутках
(-oo, pi]
Возрастает на промежутках
[pi, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- \frac{1}{\cos{\left (x \right )} - 1} \left(\cos{\left (x \right )} + \frac{\sin^{2}{\left (x \right )}}{\cos{\left (x \right )} - 1}\right) = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} \log{\left (- \cos{\left (x \right )} + 1 \right )} = \log{\left (\langle 0, 2\rangle \right )}$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \log{\left (\langle 0, 2\rangle \right )}$$
$$\lim_{x \to \infty} \log{\left (- \cos{\left (x \right )} + 1 \right )} = \log{\left (\langle 0, 2\rangle \right )}$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \log{\left (\langle 0, 2\rangle \right )}$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции log(1 - cos(x)), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \log{\left (- \cos{\left (x \right )} + 1 \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x} \log{\left (- \cos{\left (x \right )} + 1 \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\log{\left (- \cos{\left (x \right )} + 1 \right )} = \log{\left (- \cos{\left (x \right )} + 1 \right )}$$
- Да
$$\log{\left (- \cos{\left (x \right )} + 1 \right )} = - \log{\left (- \cos{\left (x \right )} + 1 \right )}$$
- Нет
значит, функция
является
чётной