Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{1}{x^{2}} \log{\left (x \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = 1$$
Численное решение
$$x_{1} = 1$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в log(x)/x^2.
$$\frac{1}{0^{2}} \log{\left (0 \right )}$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{1}{x^{3}} - \frac{2}{x^{3}} \log{\left (x \right )} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = e^{\frac{1}{2}}$$
Зн. экстремумы в точках:
-1
1/2 e
(e , ---)
2
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = e^{\frac{1}{2}}$$
Убывает на промежутках
(-oo, exp(1/2)]
Возрастает на промежутках
[exp(1/2), oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{x^{4}} \left(6 \log{\left (x \right )} - 5\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = e^{\frac{5}{6}}$$
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
$$x_{1} = 0$$
$$\lim_{x \to 0^-}\left(\frac{1}{x^{4}} \left(6 \log{\left (x \right )} - 5\right)\right) = -\infty$$
$$\lim_{x \to 0^+}\left(\frac{1}{x^{4}} \left(6 \log{\left (x \right )} - 5\right)\right) = -\infty$$
- пределы равны, зн. пропускаем соотв. точку
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[exp(5/6), oo)
Выпуклая на промежутках
(-oo, exp(5/6)]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x^{2}} \log{\left (x \right )}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{1}{x^{2}} \log{\left (x \right )}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 0$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции log(x)/x^2, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x^{3}} \log{\left (x \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x^{3}} \log{\left (x \right )}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{1}{x^{2}} \log{\left (x \right )} = \frac{1}{x^{2}} \log{\left (- x \right )}$$
- Нет
$$\frac{1}{x^{2}} \log{\left (x \right )} = - \frac{1}{x^{2}} \log{\left (- x \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной