График y = f(x) = log(x)-atan(x) (логарифм от (х) минус арктангенс от (х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = log(x)-atan(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = log(x) - atan(x)
$$f{\left (x \right )} = \log{\left (x \right )} - \operatorname{atan}{\left (x \right )}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\log{\left (x \right )} - \operatorname{atan}{\left (x \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Численное решение
$$x_{1} = 3.69258568546$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в log(x) - atan(x).
$$\log{\left (0 \right )} - \operatorname{atan}{\left (0 \right )}$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{1}{x^{2} + 1} + \frac{1}{x} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{2 x}{\left(x^{2} + 1\right)^{2}} - \frac{1}{x^{2}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\log{\left (x \right )} - \operatorname{atan}{\left (x \right )}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\log{\left (x \right )} - \operatorname{atan}{\left (x \right )}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции log(x) - atan(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(\log{\left (x \right )} - \operatorname{atan}{\left (x \right )}\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(\log{\left (x \right )} - \operatorname{atan}{\left (x \right )}\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\log{\left (x \right )} - \operatorname{atan}{\left (x \right )} = \log{\left (- x \right )} + \operatorname{atan}{\left (x \right )}$$
- Нет
$$\log{\left (x \right )} - \operatorname{atan}{\left (x \right )} = - \log{\left (- x \right )} - \operatorname{atan}{\left (x \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной