График функции y = -asin(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = -asin(x)
f(x)=asin(x)f{\left(x \right)} = - \operatorname{asin}{\left(x \right)}
График функции
02468-8-6-4-2-10102.5-2.5
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
asin(x)=0- \operatorname{asin}{\left(x \right)} = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=0x_{1} = 0
Численное решение
x1=0x_{1} = 0
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в -asin(x).
asin(0)- \operatorname{asin}{\left(0 \right)}
Результат:
f(0)=0f{\left(0 \right)} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
11x2=0- \frac{1}{\sqrt{1 - x^{2}}} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
x(1x2)32=0- \frac{x}{\left(1 - x^{2}\right)^{\frac{3}{2}}} = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(,0]\left(-\infty, 0\right]
Выпуклая на промежутках
[0,)\left[0, \infty\right)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(asin(x))=i\lim_{x \to -\infty}\left(- \operatorname{asin}{\left(x \right)}\right) = - \infty i
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(asin(x))=i\lim_{x \to \infty}\left(- \operatorname{asin}{\left(x \right)}\right) = \infty i
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции -asin(x), делённой на x при x->+oo и x ->-oo
limx(asin(x)x)=0\lim_{x \to -\infty}\left(- \frac{\operatorname{asin}{\left(x \right)}}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(asin(x)x)=0\lim_{x \to \infty}\left(- \frac{\operatorname{asin}{\left(x \right)}}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
asin(x)=asin(x)- \operatorname{asin}{\left(x \right)} = \operatorname{asin}{\left(x \right)}
- Нет
asin(x)=asin(x)- \operatorname{asin}{\left(x \right)} = - \operatorname{asin}{\left(x \right)}
- Да
значит, функция
является
нечётной
График
График функции y = -asin(x) /media/krcore-image-pods/hash/xy/3/0c/794d93b404878437ca066afbc8cd1.png