График y = f(x) = -2^(x+3) (минус 2 в степени (х плюс 3)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = -2^(x+3)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
         x + 3
f(x) = -2     
$$f{\left(x \right)} = - 2^{x + 3}$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$- 2^{x + 3} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в -2^(x + 3).
$$- 2^{0 + 3}$$
Результат:
$$f{\left(0 \right)} = -8$$
Точка:
(0, -8)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left(x \right)} = $$
первая производная
$$- 2^{x + 3} \log{\left(2 \right)} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
вторая производная
$$- 8 \cdot 2^{x} \log{\left(2 \right)}^{2} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(- 2^{x + 3}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 0$$
$$\lim_{x \to \infty}\left(- 2^{x + 3}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции -2^(x + 3), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(- \frac{2^{x + 3}}{x}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(- \frac{2^{x + 3}}{x}\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- 2^{x + 3} = - 2^{3 - x}$$
- Нет
$$- 2^{x + 3} = 2^{3 - x}$$
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = -2^(x+3) /media/krcore-image-pods/hash/xy/2/50/283c4d47af7f6301d53cb23305c89.png