График y = f(x) = -log(tan(x)) (минус логарифм от (тангенс от (х))) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = -log(tan(x))

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = -log(tan(x))
$$f{\left (x \right )} = - \log{\left (\tan{\left (x \right )} \right )}$$
График функции
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в -log(tan(x)).
$$- \log{\left (\tan{\left (0 \right )} \right )}$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{\tan^{2}{\left (x \right )} + 1}{\tan{\left (x \right )}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{\left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{\tan^{2}{\left (x \right )}} - 2 \tan^{2}{\left (x \right )} - 2 = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = - \frac{\pi}{4}$$
$$x_{2} = \frac{\pi}{4}$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[-pi/4, pi/4]

Выпуклая на промежутках
(-oo, -pi/4] U [pi/4, oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
True

Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \lim_{x \to -\infty}\left(- \log{\left (\tan{\left (x \right )} \right )}\right)$$
True

Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \lim_{x \to \infty}\left(- \log{\left (\tan{\left (x \right )} \right )}\right)$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции -log(tan(x)), делённой на x при x->+oo и x ->-oo
True

Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x \lim_{x \to -\infty}\left(- \frac{1}{x} \log{\left (\tan{\left (x \right )} \right )}\right)$$
True

Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x \lim_{x \to \infty}\left(- \frac{1}{x} \log{\left (\tan{\left (x \right )} \right )}\right)$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- \log{\left (\tan{\left (x \right )} \right )} = - \log{\left (- \tan{\left (x \right )} \right )}$$
- Нет
$$- \log{\left (\tan{\left (x \right )} \right )} = - -1 \log{\left (- \tan{\left (x \right )} \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной