График функции пересекает ось X при f = 0 значит надо решить уравнение: $$- \left|{x}\right| = 0$$ Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение $$x_{1} = 0$$ Численное решение $$x_{1} = 0$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в -|x|. $$- \left|{0}\right|$$ Результат: $$f{\left(0 \right)} = 0$$ Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left(x \right)} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left(x \right)} = $$ первая производная $$- \operatorname{sign}{\left(x \right)} = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$ Зн. экстремумы в точках:
(0, 0)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумов у функции нет Максимумы функции в точках: $$x_{1} = 0$$ Убывает на промежутках $$\left(-\infty, 0\right]$$ Возрастает на промежутках $$\left[0, \infty\right)$$
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$ вторая производная $$- 2 \delta\left(x\right) = 0$$ Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty}\left(- \left|{x}\right|\right) = -\infty$$ Возьмём предел значит, горизонтальной асимптоты слева не существует $$\lim_{x \to \infty}\left(- \left|{x}\right|\right) = -\infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции -|x|, делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty}\left(- \frac{\left|{x}\right|}{x}\right) = 1$$ Возьмём предел значит, уравнение наклонной асимптоты слева: $$y = x$$ $$\lim_{x \to \infty}\left(- \frac{\left|{x}\right|}{x}\right) = -1$$ Возьмём предел значит, уравнение наклонной асимптоты справа: $$y = - x$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$- \left|{x}\right| = - \left|{x}\right|$$ - Да $$- \left|{x}\right| = \left|{x}\right|$$ - Нет значит, функция является чётной