Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$- \frac{1}{x} \left(x + 2\right) = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = -2$$
Численное решение
$$x_{1} = -2$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (-1/x)*(x + 2).
$$2 \left(- \tilde{\infty}\right)$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{1}{x} + \frac{1}{x^{2}} \left(x + 2\right) = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(2 x + 4\right)\right) = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(- \frac{1}{x} \left(x + 2\right)\right) = -1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = -1$$
$$\lim_{x \to \infty}\left(- \frac{1}{x} \left(x + 2\right)\right) = -1$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = -1$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (-1/x)*(x + 2), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(- \frac{1}{x^{2}} \left(x + 2\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(- \frac{1}{x^{2}} \left(x + 2\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- \frac{1}{x} \left(x + 2\right) = \frac{1}{x} \left(- x + 2\right)$$
- Нет
$$- \frac{1}{x} \left(x + 2\right) = - \frac{1}{x} \left(- x + 2\right)$$
- Нет
значит, функция
не является
ни чётной ни нечётной