Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$- x \log^{2}{\left (x \right )} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = 0$$
$$x_{2} = 1$$
Численное решение
$$x_{1} = 0$$
$$x_{2} = 1$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (-x)*log(x)^2.
$$- 0 \log^{2}{\left (0 \right )}$$
Результат:
$$f{\left (0 \right )} = \mathrm{NaN}$$
- решений у ур-ния нет
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \log^{2}{\left (x \right )} - 2 \log{\left (x \right )} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 1$$
$$x_{2} = e^{-2}$$
Зн. экстремумы в точках:
(1, 0)
-2 -2
(e , -4*e )
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = e^{-2}$$
Максимумы функции в точках:
$$x_{2} = 1$$
Убывает на промежутках
[exp(-2), 1]
Возрастает на промежутках
(-oo, exp(-2)] U [1, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- \frac{1}{x} \left(2 \log{\left (x \right )} + 2\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = e^{-1}$$
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, exp(-1)]
Выпуклая на промежутках
[exp(-1), oo)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(- x \log^{2}{\left (x \right )}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(- x \log^{2}{\left (x \right )}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (-x)*log(x)^2, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(- \log^{2}{\left (x \right )}\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(- \log^{2}{\left (x \right )}\right) = -\infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$- x \log^{2}{\left (x \right )} = x \log^{2}{\left (- x \right )}$$
- Нет
$$- x \log^{2}{\left (x \right )} = - x \log^{2}{\left (- x \right )}$$
- Нет
значит, функция
не является
ни чётной ни нечётной