График y = f(x) = ((|x/2-1|)) (((модуль от х делить на 2 минус 1|))) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = ((|x/2-1|))

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
       |x    |
f(x) = |- - 1|
       |2    |
$$f{\left (x \right )} = \left|{\frac{x}{2} - 1}\right|$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\left|{\frac{x}{2} - 1}\right| = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 2$$
Численное решение
$$x_{1} = 2$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в |x/2 - 1|.
$$\left|{-1 + \frac{0}{2}}\right|$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{1}{2} \operatorname{sign}{\left (\frac{x}{2} - 1 \right )} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 2$$
Зн. экстремумы в точках:
(2, 0)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{1} = 2$$
Максимумов у функции нет
Убывает на промежутках
[2, oo)

Возрастает на промежутках
(-oo, 2]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty} \left|{\frac{x}{2} - 1}\right| = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty} \left|{\frac{x}{2} - 1}\right| = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции |x/2 - 1|, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left|{\frac{x}{2} - 1}\right|\right) = - \frac{1}{2}$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = - \frac{x}{2}$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left|{\frac{x}{2} - 1}\right|\right) = \frac{1}{2}$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = \frac{x}{2}$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\left|{\frac{x}{2} - 1}\right| = \left|{\frac{x}{2} + 1}\right|$$
- Нет
$$\left|{\frac{x}{2} - 1}\right| = - \left|{\frac{x}{2} + 1}\right|$$
- Нет
значит, функция
не является
ни чётной ни нечётной