График функции y = ((|x/2-1|))

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
       |x    |
f(x) = |- - 1|
       |2    |
f(x)=x21f{\left (x \right )} = \left|{\frac{x}{2} - 1}\right|
График функции
801234567-4-3-2-105
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x21=0\left|{\frac{x}{2} - 1}\right| = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=2x_{1} = 2
Численное решение
x1=2x_{1} = 2
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в |x/2 - 1|.
1+02\left|{-1 + \frac{0}{2}}\right|
Результат:
f(0)=1f{\left (0 \right )} = 1
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
12sign(x21)=0\frac{1}{2} \operatorname{sign}{\left (\frac{x}{2} - 1 \right )} = 0
Решаем это уравнение
Корни этого ур-ния
x1=2x_{1} = 2
Зн. экстремумы в точках:
(2, 0)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=2x_{1} = 2
Максимумов у функции нет
Убывает на промежутках
[2, oo)

Возрастает на промежутках
(-oo, 2]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limxx21=\lim_{x \to -\infty} \left|{\frac{x}{2} - 1}\right| = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limxx21=\lim_{x \to \infty} \left|{\frac{x}{2} - 1}\right| = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции |x/2 - 1|, делённой на x при x->+oo и x ->-oo
limx(1xx21)=12\lim_{x \to -\infty}\left(\frac{1}{x} \left|{\frac{x}{2} - 1}\right|\right) = - \frac{1}{2}
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=x2y = - \frac{x}{2}
limx(1xx21)=12\lim_{x \to \infty}\left(\frac{1}{x} \left|{\frac{x}{2} - 1}\right|\right) = \frac{1}{2}
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=x2y = \frac{x}{2}
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x21=x2+1\left|{\frac{x}{2} - 1}\right| = \left|{\frac{x}{2} + 1}\right|
- Нет
x21=x2+1\left|{\frac{x}{2} - 1}\right| = - \left|{\frac{x}{2} + 1}\right|
- Нет
значит, функция
не является
ни чётной ни нечётной