График y = f(x) = 1/cos(x)+sin(x) (1 делить на косинус от (х) плюс синус от (х)) постройте график функции и изобразите его. Исследуйте данную функцию. [Есть ответ!]

График функции y = 1/cos(x)+sin(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
         1            
f(x) = ------ + sin(x)
       cos(x)         
$$f{\left (x \right )} = \sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}}$$
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 1.5707963267949$$
$$x_{2} = 4.71238898038469$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 1/cos(x) + sin(x).
$$\sin{\left (0 \right )} + \frac{1}{\cos{\left (0 \right )}}$$
Результат:
$$f{\left (0 \right )} = 1$$
Точка:
(0, 1)
Вертикальные асимптоты
Есть:
$$x_{1} = 1.5707963267949$$
$$x_{2} = 4.71238898038469$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
True

Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = \lim_{x \to -\infty}\left(\sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}}\right)$$
True

Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = \lim_{x \to \infty}\left(\sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}}\right)$$
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 1/cos(x) + sin(x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(\sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}}\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(\sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}}\right)\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}} = - \sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}}$$
- Нет
$$\sin{\left (x \right )} + \frac{1}{\cos{\left (x \right )}} = - -1 \sin{\left (x \right )} - \frac{1}{\cos{\left (x \right )}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной