График функции y = 1/(sin(x))

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
         1   
f(x) = ------
       sin(x)
f(x)=1sin(x)f{\left (x \right )} = \frac{1}{\sin{\left (x \right )}}
Область определения функции
Точки, в которых функция точно неопределена:
x1=0x_{1} = 0
x2=3.14159265358979x_{2} = 3.14159265358979
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
1sin(x)=0\frac{1}{\sin{\left (x \right )}} = 0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 1/sin(x).
1sin(0)\frac{1}{\sin{\left (0 \right )}}
Результат:
f(0)=~f{\left (0 \right )} = \tilde{\infty}
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
cos(x)sin2(x)=0- \frac{\cos{\left (x \right )}}{\sin^{2}{\left (x \right )}} = 0
Решаем это уравнение
Корни этого ур-ния
x1=π2x_{1} = \frac{\pi}{2}
x2=3π2x_{2} = \frac{3 \pi}{2}
Зн. экстремумы в точках:
 pi    
(--, 1)
 2     

 3*pi     
(----, -1)
  2       


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x2=π2x_{2} = \frac{\pi}{2}
Максимумы функции в точках:
x2=3π2x_{2} = \frac{3 \pi}{2}
Убывает на промежутках
[pi/2, 3*pi/2]

Возрастает на промежутках
(-oo, pi/2] U [3*pi/2, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
1sin(x)(1+2cos2(x)sin2(x))=0\frac{1}{\sin{\left (x \right )}} \left(1 + \frac{2 \cos^{2}{\left (x \right )}}{\sin^{2}{\left (x \right )}}\right) = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
x1=0x_{1} = 0
x2=3.14159265358979x_{2} = 3.14159265358979
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx1sin(x)=,\lim_{x \to -\infty} \frac{1}{\sin{\left (x \right )}} = \langle -\infty, \infty\rangle
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=,y = \langle -\infty, \infty\rangle
limx1sin(x)=,\lim_{x \to \infty} \frac{1}{\sin{\left (x \right )}} = \langle -\infty, \infty\rangle
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=,y = \langle -\infty, \infty\rangle
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 1/sin(x), делённой на x при x->+oo и x ->-oo
True

Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=xlimx(1xsin(x))y = x \lim_{x \to -\infty}\left(\frac{1}{x \sin{\left (x \right )}}\right)
True

Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=xlimx(1xsin(x))y = x \lim_{x \to \infty}\left(\frac{1}{x \sin{\left (x \right )}}\right)
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
1sin(x)=1sin(x)\frac{1}{\sin{\left (x \right )}} = - \frac{1}{\sin{\left (x \right )}}
- Нет
1sin(x)=1sin(x)\frac{1}{\sin{\left (x \right )}} = - \frac{-1}{\sin{\left (x \right )}}
- Да
значит, функция
является
нечётной