График функции y = 7-x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = 7 - x
f(x)=x+7f{\left (x \right )} = - x + 7
График функции
02468-8-6-4-2-1010-2020
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x+7=0- x + 7 = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=7x_{1} = 7
Численное решение
x1=7x_{1} = 7
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 7 - x.
0+7- 0 + 7
Результат:
f(0)=7f{\left (0 \right )} = 7
Точка:
(0, 7)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
1=0-1 = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x+7)=\lim_{x \to -\infty}\left(- x + 7\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x+7)=\lim_{x \to \infty}\left(- x + 7\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 7 - x, делённой на x при x->+oo и x ->-oo
limx(1x(x+7))=1\lim_{x \to -\infty}\left(\frac{1}{x} \left(- x + 7\right)\right) = -1
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=xy = - x
limx(1x(x+7))=1\lim_{x \to \infty}\left(\frac{1}{x} \left(- x + 7\right)\right) = -1
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=xy = - x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x+7=x+7- x + 7 = x + 7
- Нет
x+7=x7- x + 7 = - x - 7
- Нет
значит, функция
не является
ни чётной ни нечётной