График функции пересекает ось X при f = 0 значит надо решить уравнение: 7x−5=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=75 Численное решение x1=0.714285714286
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в 7*x - 5. −5+0⋅7 Результат: f(0)=−5 Точка:
(0, -5)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная 7=0 Решаем это уравнение Решения не найдены, возможно экстремумов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(7x−5)=−∞ Возьмём предел значит, горизонтальной асимптоты слева не существует x→∞lim(7x−5)=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 7*x - 5, делённой на x при x->+oo и x ->-oo x→−∞lim(x1(7x−5))=7 Возьмём предел значит, уравнение наклонной асимптоты слева: y=7x x→∞lim(x1(7x−5))=7 Возьмём предел значит, уравнение наклонной асимптоты справа: y=7x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: 7x−5=−7x−5 - Нет 7x−5=−−1⋅7x+5 - Нет значит, функция не является ни чётной ни нечётной