Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 0$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$3 x - \frac{1}{x} = 0$$
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение
$$x_{1} = - \frac{\sqrt{3}}{3}$$
$$x_{2} = \frac{\sqrt{3}}{3}$$
Численное решение
$$x_{1} = -0.57735026919$$
$$x_{2} = 0.57735026919$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 3*x - 1/x.
$$0 \cdot 3 - \tilde{\infty}$$
Результат:
$$f{\left (0 \right )} = \tilde{\infty}$$
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$3 + \frac{1}{x^{2}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$- \frac{2}{x^{3}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(3 x - \frac{1}{x}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(3 x - \frac{1}{x}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 3*x - 1/x, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(3 x - \frac{1}{x}\right)\right) = 3$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = 3 x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(3 x - \frac{1}{x}\right)\right) = 3$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = 3 x$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$3 x - \frac{1}{x} = - 3 x + \frac{1}{x}$$
- Нет
$$3 x - \frac{1}{x} = - -1 \cdot 3 x - \frac{1}{x}$$
- Нет
значит, функция
не является
ни чётной ни нечётной