График функции пересекает ось X при f = 0 значит надо решить уравнение: $$3 x^{2} - 1 = 0$$ Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение $$x_{1} = - \frac{\sqrt{3}}{3}$$ $$x_{2} = \frac{\sqrt{3}}{3}$$ Численное решение $$x_{1} = -0.57735026919$$ $$x_{2} = 0.57735026919$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в 3*x^2 - 1. $$-1 + 3 \cdot 0^{2}$$ Результат: $$f{\left (0 \right )} = -1$$ Точка:
(0, -1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left (x \right )} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left (x \right )} = $$ Первая производная $$6 x = 0$$ Решаем это уравнение Корни этого ур-ния $$x_{1} = 0$$ Зн. экстремумы в точках:
(0, -1)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: $$x_{1} = 0$$ Максимумов у функции нет Убывает на промежутках
[0, oo)
Возрастает на промежутках
(-oo, 0]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$ Вторая производная $$6 = 0$$ Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty}\left(3 x^{2} - 1\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты слева не существует $$\lim_{x \to \infty}\left(3 x^{2} - 1\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 3*x^2 - 1, делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty}\left(\frac{1}{x} \left(3 x^{2} - 1\right)\right) = -\infty$$ Возьмём предел значит, наклонной асимптоты слева не существует $$\lim_{x \to \infty}\left(\frac{1}{x} \left(3 x^{2} - 1\right)\right) = \infty$$ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$3 x^{2} - 1 = 3 x^{2} - 1$$ - Да $$3 x^{2} - 1 = - 3 x^{2} + 1$$ - Нет значит, функция является чётной